login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063481
a(n) = 4^n + 8^n.
40
2, 12, 80, 576, 4352, 33792, 266240, 2113536, 16842752, 134479872, 1074790400, 8594128896, 68736253952, 549822922752, 4398314946560, 35185445830656, 281479271677952, 2251816993554432, 18014467228958720, 144115462953762816
OFFSET
0,1
COMMENTS
Shift 2^n+1 left 2n bits.
LINKS
D. Suprijanto and Rusliansyah, Observation on Sums of Powers of Integers Divisible by Four, Applied Mathematical Sciences, Vol. 8, 2014, no. 45, 2219 - 2226.
FORMULA
G.f.: 1/(1-4*x)+1/(1-8*x). E.g.f.: e^(4*x)+e^(8*x). - Mohammad K. Azarian, Jan 11 2009
a(n)=12*a(n-1)-32*a(n-2) with a(0)=2, a(1)=12. - Vincenzo Librandi, Jul 21 2010
G.f.: G(0), where G(k)= 1 + 2^k/(1 - 4*x/(4*x + 2^k/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 22 2013
EXAMPLE
n=3: 23+1 shifted 2*3 bits to the left is 576 because 23+1 in binary is [1, 0, 0, 1] and 576 is [1, 0, 0, 1, 0, 0, 0, 0, 0, 0].
MATHEMATICA
Table[4^n + 8^n, {n, 0, 25}]
PROG
(PARI) for(n=0, 22, print(shift(2^n+1, 2*n)))
(PARI) { for (n=0, 200, write("b063481.txt", n, " ", shift(1, 2*n) + shift(1, 3*n)) ) } \\ Harry J. Smith, Aug 23 2009
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Jul 28 2001
EXTENSIONS
Edited by Robert G. Wilson v, Aug 25 2002
STATUS
approved