login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 4^n + 8^n.
40

%I #32 Aug 18 2024 14:04:29

%S 2,12,80,576,4352,33792,266240,2113536,16842752,134479872,1074790400,

%T 8594128896,68736253952,549822922752,4398314946560,35185445830656,

%U 281479271677952,2251816993554432,18014467228958720,144115462953762816

%N a(n) = 4^n + 8^n.

%C Shift 2^n+1 left 2n bits.

%H Harry J. Smith, <a href="/A063481/b063481.txt">Table of n, a(n) for n=0,...,200</a>

%H D. Suprijanto and Rusliansyah, <a href="http://dx.doi.org/10.12988/ams.2014.4140">Observation on Sums of Powers of Integers Divisible by Four</a>, Applied Mathematical Sciences, Vol. 8, 2014, no. 45, 2219 - 2226.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (12,-32).

%F G.f.: 1/(1-4*x)+1/(1-8*x). E.g.f.: e^(4*x)+e^(8*x). - _Mohammad K. Azarian_, Jan 11 2009

%F a(n)=12*a(n-1)-32*a(n-2) with a(0)=2, a(1)=12. - _Vincenzo Librandi_, Jul 21 2010

%F G.f.: G(0), where G(k)= 1 + 2^k/(1 - 4*x/(4*x + 2^k/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jul 22 2013

%e n=3: 23+1 shifted 2*3 bits to the left is 576 because 23+1 in binary is [1, 0, 0, 1] and 576 is [1, 0, 0, 1, 0, 0, 0, 0, 0, 0].

%t Table[4^n + 8^n, {n, 0, 25}]

%o (PARI) for(n=0,22,print(shift(2^n+1,2*n)))

%o (PARI) { for (n=0, 200, write("b063481.txt", n, " ", shift(1, 2*n) + shift(1, 3*n)) ) } \\ _Harry J. Smith_, Aug 23 2009

%Y Cf. A000051, A034472, A052539, A034474, A062394, A034491, A062395, A062396, A007689, A063376, A074600 - A074624.

%K easy,nonn

%O 0,1

%A _Jason Earls_, Jul 28 2001

%E Edited by _Robert G. Wilson v_, Aug 25 2002