login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063445
Moebius transform of f(x) = EulerPhi(x^2) function (A002618).
3
1, 1, 5, 6, 19, 5, 41, 24, 48, 19, 109, 30, 155, 41, 95, 96, 271, 48, 341, 114, 205, 109, 505, 120, 480, 155, 432, 246, 811, 95, 929, 384, 545, 271, 779, 288, 1331, 341, 775, 456, 1639, 205, 1805, 654, 912, 505, 2161, 480, 2016, 480, 1355, 930, 2755, 432
OFFSET
1,3
COMMENTS
Same as Moebius transform of g(x) = x*EulerPhi(x). - Benoit Cloitre, Apr 05 2002
LINKS
FORMULA
a(n) = Sum_{d|n} phi(d^2)*mu(n/d).
Multiplicative with a(p) = p^2 - p - 1 and a(p^e) = p^(2*e) - p^(2*e-1) - p^(2*e-2) + p^(2*e-3), e > 1. - Vladeta Jovovic, Jul 29 2001
Dirichlet g.f. zeta(s-2)/(zeta(s)*zeta(s-1)). - R. J. Mathar, Feb 09 2011
Sum_{k=1..n} a(k) ~ 2*n^3 / (Pi^2 * Zeta(3)). - Vaclav Kotesovec, Feb 01 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/(p^2-p-1) + p/((p-1)^3 * (p+1)^2)) = 3.037448431566721466562170968413075105160439538735056586164601312913619316... - Vaclav Kotesovec, Sep 20 2020
a(n) = Sum_{1 <= i, j <= n} gcd(i, j, n)*moebius(gcd(i, j, n)) = Sum_{d divides n} d*moebius(d)*J_2(n/d), where J_2 is the Jordan totient function A007434. - Peter Bala, Jan 21 2024
EXAMPLE
For n=20, divisors = {1,2,4,5,10,20}, phi(d^2) = {1,2,8,20,40,160}, mu(20/d) = {0,1,-1,0,-1,1}, a(20) = 0 + 2 - 8 + 0 - 40 + 160 = 114.
a(20) = a(4)*a(5) = (16 - 8 - 4 + 2)*(25 - 5 - 1) = 6*19 = 114.
MATHEMATICA
Table[Sum[EulerPhi[d]*MoebiusMu[n/d]*d, {d, Divisors[n]}], {n, 1, 50}] (* Vaclav Kotesovec, Feb 01 2019 *)
PROG
(PARI) a(n)=if(n<1, 0, sumdiv(n, d, d*eulerphi(d)*moebius(n/d)))
CROSSREFS
KEYWORD
nonn,mult,easy
AUTHOR
Labos Elemer, Jul 24 2001
STATUS
approved