OFFSET
1,3
COMMENTS
Same as Moebius transform of g(x) = x*EulerPhi(x). - Benoit Cloitre, Apr 05 2002
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = Sum_{d|n} phi(d^2)*mu(n/d).
Multiplicative with a(p) = p^2 - p - 1 and a(p^e) = p^(2*e) - p^(2*e-1) - p^(2*e-2) + p^(2*e-3), e > 1. - Vladeta Jovovic, Jul 29 2001
Dirichlet g.f. zeta(s-2)/(zeta(s)*zeta(s-1)). - R. J. Mathar, Feb 09 2011
Sum_{k=1..n} a(k) ~ 2*n^3 / (Pi^2 * Zeta(3)). - Vaclav Kotesovec, Feb 01 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/(p^2-p-1) + p/((p-1)^3 * (p+1)^2)) = 3.037448431566721466562170968413075105160439538735056586164601312913619316... - Vaclav Kotesovec, Sep 20 2020
a(n) = Sum_{1 <= i, j <= n} gcd(i, j, n)*moebius(gcd(i, j, n)) = Sum_{d divides n} d*moebius(d)*J_2(n/d), where J_2 is the Jordan totient function A007434. - Peter Bala, Jan 21 2024
EXAMPLE
For n=20, divisors = {1,2,4,5,10,20}, phi(d^2) = {1,2,8,20,40,160}, mu(20/d) = {0,1,-1,0,-1,1}, a(20) = 0 + 2 - 8 + 0 - 40 + 160 = 114.
a(20) = a(4)*a(5) = (16 - 8 - 4 + 2)*(25 - 5 - 1) = 6*19 = 114.
MATHEMATICA
Table[Sum[EulerPhi[d]*MoebiusMu[n/d]*d, {d, Divisors[n]}], {n, 1, 50}] (* Vaclav Kotesovec, Feb 01 2019 *)
PROG
(PARI) a(n)=if(n<1, 0, sumdiv(n, d, d*eulerphi(d)*moebius(n/d)))
CROSSREFS
KEYWORD
nonn,mult,easy
AUTHOR
Labos Elemer, Jul 24 2001
STATUS
approved