login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063447
Continued fraction for Pi * sqrt(2).
2
4, 2, 3, 1, 7, 7, 1, 3, 1, 1, 1, 1, 4, 10, 8, 1, 2, 3, 3, 2, 5, 8, 6, 14, 1, 9, 1, 1, 1, 2, 6, 2, 2, 4, 3, 2, 2, 6, 1, 12, 1, 35, 32, 1, 3, 5, 15, 1, 2, 1, 6, 1, 2, 1, 1, 2, 16, 6, 1, 7, 1, 2, 2, 1, 2, 1, 1, 27, 3, 6, 4, 26, 2, 1, 31, 2, 1, 1, 12, 1, 1, 2, 2, 1, 24, 5, 2, 591, 6, 33, 1, 8, 1, 2, 6, 2
OFFSET
0,1
LINKS
EXAMPLE
4.442882938158366247015880990... = 4 + 1/(2 + 1/(3 + 1/(1 + 1/(7 + ...))))
MATHEMATICA
ContinuedFraction[Pi*Sqrt[2], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 21 2011*)
PROG
(PARI) contfrac(Pi*sqrt(2))
(PARI) allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi*sqrt(2)); for (n=1, 20000, write("b063447.txt", n-1, " ", x[n])) \\ Harry J. Smith, Aug 21 2009
(Magma) SetDefaultRealField(RealField(150)); R:= RealField(); ContinuedFraction(Pi(R)*Sqrt(2)); // G. C. Greubel, Aug 16 2018
CROSSREFS
Cf. A063448 (decimal expansion).
Sequence in context: A222221 A254043 A016513 * A304786 A335381 A018845
KEYWORD
cofr,easy,nonn
AUTHOR
Jason Earls, Jul 24 2001
EXTENSIONS
Offset changed by Andrew Howroyd, Aug 04 2024
STATUS
approved