login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063131
Odd composite numbers which in base 2 contain their largest proper factor as a substring of digits.
3
55, 91, 215, 407, 493, 893, 1189, 1343, 1403, 1643, 1681, 1961, 3151, 3223, 3415, 4063, 4579, 7087, 7597, 7979, 8791, 9167, 10579, 11227, 13303, 13655, 14219, 15487, 16147, 22939, 23479, 24341, 25751, 26101, 27571, 28757, 30461, 30607
OFFSET
1,1
COMMENTS
The Pascal program checks to n=100000 in about a second on a 2GHz desktop, about three times as fast than the Mathematica program.
LINKS
MATHEMATICA
Do[ If[ !PrimeQ[ n ] && StringPosition[ ToString[ FromDigits[ IntegerDigits[ n, 2 ] ] ], ToString[ FromDigits[ IntegerDigits[ Divisors[ n ] [ [ -2 ] ], 2 ] ] ] ] != {}, Print[ n ] ], {n, 3, 500, 2} ]
PROG
(Pascal) program A063131; var n, nn, lpd:longint; nstr, dstr:string; function prime(n:longint; var d:longint):boolean; var sq, i:longint; begin{PRIME} sq := round(sqrt(n)); for i := 2 to sq do if n mod i=0 then begin d := n div i; prime := false; exit; end; prime := true; end{PRIME}; begin{MAIN} for n := 3 to 100000 do if (n mod 2=1) and (not prime(n, lpd)) then begin nn := n; nstr := ''; repeat if nn mod 2=1 then nstr := '1'+nstr else nstr := '0'+nstr; nn := nn div 2; until nn=0; dstr := ''; repeat if lpd mod 2=1 then dstr := '1'+dstr else dstr := '0'+dstr; lpd := lpd div 2; until lpd=0; if pos(dstr, nstr)>0 then write(n:8); end; end.
(Magma) [k:k in [3..31000 by 2] | not IsPrime(k) and IntegerToString(Seqint(Intseq(Max(Set(Divisors(k)) diff {k}), 2))) in IntegerToString(Seqint(Intseq(k)), 2)]; // Marius A. Burtea, Jan 29 2020
(Python)
from sympy import divisors, isprime
def ok(n):
if n < 4 or n&1 == 0 or isprime(n): return False
return bin(divisors(n)[-2])[2:] in bin(n)[2:]
print([k for k in range(10**5) if ok(k)]) # Michael S. Branicky, Jul 29 2022
CROSSREFS
Sequence in context: A143205 A111192 A063873 * A128880 A039596 A377872
KEYWORD
base,nonn
AUTHOR
Robert G. Wilson v, Aug 08 2001
EXTENSIONS
Extended and edited by John W. Layman, Apr 06 2002
STATUS
approved