The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A128880 Triangular numbers congruent to 1 or 5 mod 6. 3
1, 55, 91, 253, 325, 595, 703, 1081, 1225, 1711, 1891, 2485, 2701, 3403, 3655, 4465, 4753, 5671, 5995, 7021, 7381, 8515, 8911, 10153, 10585, 11935, 12403, 13861, 14365, 15931, 16471, 18145, 18721, 20503, 21115, 23005, 23653, 25651, 26335, 28441 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Or, except for the first term, triangular numbers the least prime factor of which is >=5.
There are no triangular numbers that are congruent to 5 mod 6. - Amiram Eldar, Aug 18 2022
LINKS
FORMULA
a(1)=Tr(1), a(2)=Tr(10), where Tr(k)=k(k+1)/2 is triangular number; for n>=3 a(n)=Tr(k(n)), where k(n)=k(n-2)+12 with k(1)=1, k(2)=10.
G.f.: -x*(1+54*x+34*x^2+54*x^3+x^4) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Jul 07 2015
From Colin Barker, Jan 26 2016: (Start)
a(n) = (36*n^2+18*(-1)^n*n-36*n-9*(-1)^n+11)/2.
a(n) = 18*n^2-9*n+1 for n even.
a(n) = 18*n^2-27*n+10 for n odd.
(End)
Sum_{n>=1} 1/a(n) = Pi/3. - Amiram Eldar, Aug 18 2022
MATHEMATICA
c=0; Do[tr=n(n+1)/2; If[Abs[Mod[tr, 6]]==1, c++; a[c]=tr], {n, 300}]; Table[a[i], {i, c}]
Select[Accumulate[Range[500]], MemberQ[{1, 5}, Mod[#, 6]]&] (* Harvey P. Dale, Sep 28 2013 *)
PROG
(PARI) Vec(-x*(1+54*x+34*x^2+54*x^3+x^4)/((1+x)^2*(x-1)^3) + O(x^100)) \\ Colin Barker, Jan 26 2016
CROSSREFS
Intersection of A000217 and A007310.
Sequence in context: A111192 A063873 A063131 * A039596 A013543 A115377
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, Apr 18 2007, Apr 25 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 14:08 EDT 2024. Contains 372717 sequences. (Running on oeis4.)