login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062649
Composite numbers with property that every divisor contains the digit 1.
3
121, 143, 169, 187, 221, 341, 361, 451, 671, 781, 961, 1037, 1111, 1133, 1159, 1177, 1199, 1207, 1243, 1271, 1313, 1331, 1339, 1349, 1391, 1397, 1417, 1441, 1469, 1507, 1529, 1573, 1639, 1651, 1661, 1681, 1703, 1717, 1727, 1751, 1781, 1793, 1807, 1819
OFFSET
1,1
COMMENTS
Intersection of A002808 and A062634. - Michel Marcus, Sep 12 2013
LINKS
EXAMPLE
143 has divisors 1, 11, 13 and 143, all of which contain the digit 1.
MATHEMATICA
fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 1850], !PrimeQ[#] && fQ[#, 1] &] (* Robert G. Wilson v, Jun 11 2014 *)
PROG
(PARI) lista(nn) = {forcomposite(n = 1, nn, ok = 1; fordiv(n, d, ok = ok && setsearch(Set(digits(d)), 1)); if (ok, print1(n, ", ")); ); } \\ Michel Marcus, Sep 12 2013
KEYWORD
base,easy,nonn
AUTHOR
Erich Friedman, Jul 04 2001
STATUS
approved