login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Composite numbers with property that every divisor contains the digit 1.
3

%I #17 Nov 08 2019 03:18:23

%S 121,143,169,187,221,341,361,451,671,781,961,1037,1111,1133,1159,1177,

%T 1199,1207,1243,1271,1313,1331,1339,1349,1391,1397,1417,1441,1469,

%U 1507,1529,1573,1639,1651,1661,1681,1703,1717,1727,1751,1781,1793,1807,1819

%N Composite numbers with property that every divisor contains the digit 1.

%C Intersection of A002808 and A062634. - _Michel Marcus_, Sep 12 2013

%H Amiram Eldar, <a href="/A062649/b062649.txt">Table of n, a(n) for n = 1..10000</a>

%e 143 has divisors 1, 11, 13 and 143, all of which contain the digit 1.

%t fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 1850], !PrimeQ[#] && fQ[#, 1] &] (* _Robert G. Wilson v_, Jun 11 2014 *)

%o (PARI) lista(nn) = {forcomposite(n = 1, nn, ok = 1; fordiv(n, d, ok = ok && setsearch(Set(digits(d)), 1)); if (ok, print1(n, ", ")););} \\ _Michel Marcus_, Sep 12 2013

%Y Cf. A062634, A062653, A062664, A062667, A062669, A062670, A062671, A062672, A062673, A062674, A062675, A062676, A062677, A062678, A062679, A062680.

%K base,easy,nonn

%O 1,1

%A _Erich Friedman_, Jul 04 2001