login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062634
Numbers k such that every divisor of k contains the digit 1.
8
1, 11, 13, 17, 19, 31, 41, 61, 71, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 211, 221, 241, 251, 271, 281, 311, 313, 317, 331, 341, 361, 401, 419, 421, 431, 451, 461, 491, 521
OFFSET
1,2
COMMENTS
First composite term is 121. All powers of 11 are in the sequence. - Alonso del Arte, Sep 29 2013
LINKS
EXAMPLE
143 has divisors 1, 11, 13 and 143, all of which contain the digit 1.
MAPLE
q:= n-> andmap(x-> 1 in convert(x, base, 10), numtheory[divisors](n)):
select(q, [$1..1000])[]; # Alois P. Heinz, May 09 2022
MATHEMATICA
fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 525], fQ[#, 1] &] (* Robert G. Wilson v, Jun 11 2014 *)
PROG
(Haskell)
a062634 n = a062634_list !! (n-1)
a062634_list = filter
(and . map ((elem '1') . show) . a027750_row) a011531_list
-- Reinhard Zumkeller, Feb 05 2012
(PARI) isok(m) = fordiv(m, d, if (! #select(x->(x==1), digits(d)), return(0))); return(1); \\ Michel Marcus, May 09 2022
CROSSREFS
Cf. A027750, subsequence of A011531; A206159 and A208270 are subsequences.
Cf. A001020 (powers of 11).
Sequence in context: A154981 A092912 A092911 * A239058 A208270 A106101
KEYWORD
nonn,base,easy
AUTHOR
Erich Friedman, Jul 04 2001
EXTENSIONS
Offset corrected by Reinhard Zumkeller, Feb 05 2012
STATUS
approved