login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062408
Numbers k such that floor(Pi*k) is prime.
3
1, 10, 12, 14, 15, 17, 19, 31, 33, 35, 36, 42, 50, 52, 57, 61, 63, 71, 73, 77, 80, 82, 84, 98, 99, 101, 117, 119, 122, 124, 138, 140, 143, 147, 159, 166, 182, 187, 189, 201, 206, 208, 210, 220, 226, 229, 241, 245, 254, 262, 264, 273, 275, 289, 290, 296, 308, 311
OFFSET
0,2
COMMENTS
Chua, Park, & Smith prove a general result that implies that, for any m, there is a constant C(m) such that a(n+m) - a(n) < C(m) infinitely often. - Charles R Greathouse IV, Jun 30 2022
LINKS
Lynn Chua, Soohyun Park, and Geoffrey D. Smith, Bounded gaps between primes in special sequences, Proceedings of the AMS, Volume 143, Number 11 (November 2015), pp. 4597-4611.
MATHEMATICA
Select[Range[1, 400], PrimeQ[Floor[Pi #]] &] (* Bruno Berselli, Sep 30 2012 *)
PROG
(PARI) je=[]; for(n=0, 1000, if(isprime(floor(Pi*n)), je=concat(je, n), )); je
(PARI) { default(realprecision, 50); n=-1; for (m=1, 10^5, if (isprime(floor(Pi*m)), write("b062408.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 07 2009
CROSSREFS
Sequence in context: A094879 A206286 A116023 * A127653 A050705 A095406
KEYWORD
nonn
AUTHOR
Jason Earls, Jul 08 2001
STATUS
approved