Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Mar 29 2023 19:01:53
%S 1,10,12,14,15,17,19,31,33,35,36,42,50,52,57,61,63,71,73,77,80,82,84,
%T 98,99,101,117,119,122,124,138,140,143,147,159,166,182,187,189,201,
%U 206,208,210,220,226,229,241,245,254,262,264,273,275,289,290,296,308,311
%N Numbers k such that floor(Pi*k) is prime.
%C Chua, Park, & Smith prove a general result that implies that, for any m, there is a constant C(m) such that a(n+m) - a(n) < C(m) infinitely often. - _Charles R Greathouse IV_, Jun 30 2022
%H Harry J. Smith, <a href="/A062408/b062408.txt">Table of n, a(n) for n = 0..1000</a>
%H Lynn Chua, Soohyun Park, and Geoffrey D. Smith, <a href="https://arxiv.org/abs/1407.1747">Bounded gaps between primes in special sequences</a>, Proceedings of the AMS, Volume 143, Number 11 (November 2015), pp. 4597-4611.
%t Select[Range[1, 400], PrimeQ[Floor[Pi #]] &] (* _Bruno Berselli_, Sep 30 2012 *)
%o (PARI) je=[]; for(n=0,1000, if(isprime(floor(Pi*n)),je=concat(je,n),)); je
%o (PARI) { default(realprecision, 50); n=-1; for (m=1, 10^5, if (isprime(floor(Pi*m)), write("b062408.txt", n++, " ", m); if (n==1000, break)) ) } \\ _Harry J. Smith_, Aug 07 2009
%Y Cf. A022844, A067559.
%K nonn
%O 0,2
%A _Jason Earls_, Jul 08 2001