OFFSET
1,1
COMMENTS
Prime factors counted with multiplicity, e.g., 44 = 2*2*11 so the sum of its prime factors is 15 (not 13). - Harvey P. Dale, May 30 2012
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
EXAMPLE
E.g., 545 = 5*109 so 545 +- (5+109) = 545 +- 114 = 659 and 431 and both are primes.
MATHEMATICA
spfQ[n_]:=Module[{s=Total[Times@@@FactorInteger[n]]}, !PrimeQ[n] && PrimeQ[ n+s]&&PrimeQ[n-s]]; Select[Range[700], spfQ] (* Harvey P. Dale, May 30 2012 *)
PROG
(PARI) lista(nn) = {forcomposite(n=2, nn, f = factor(n); sopfr = sum(j=1, #f~, f[j, 1]*f[j, 2]); if (isprime(n+sopfr) && isprime(n-sopfr), print1(n, ", ")); ); } \\ Michel Marcus, Jul 03 2017
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Patrick De Geest, Aug 15 1999
STATUS
approved