login
A337028
Numbers k such that k + A001414(k), k - A001414(k) and k mod A001414(k) are all prime.
1
10, 12, 14, 15, 20, 26, 33, 35, 38, 51, 65, 68, 86, 96, 111, 112, 116, 161, 201, 203, 206, 209, 215, 221, 278, 297, 300, 304, 321, 371, 395, 398, 413, 420, 471, 533, 545, 551, 570, 626, 671, 698, 720, 755, 779, 803, 837, 858, 866, 910, 972, 1020, 1046, 1124, 1155, 1161, 1286, 1326, 1349, 1385
OFFSET
1,1
LINKS
EXAMPLE
a(3)=14 is in the sequence because A001414(14)=9, and 14-9=5, 14+9=23 and 14 mod 9 = 5 are all prime.
MAPLE
A001414:= proc(n) local F; F:= ifactors(n)[2]; convert(map(convert, F, `*`), `+`) end proc:
filter:= proc(n) local s; s:= A001414(n); isprime(n+s) and isprime(n-s) and isprime(n mod s) end proc:
select(filter, [$1..2000]);
CROSSREFS
Cf. A001414. Subset of A050705.
Sequence in context: A127653 A050705 A095406 * A050769 A330724 A351998
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Aug 11 2020
STATUS
approved