The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A061870 Numbers such that |first digit - second digit + third digit - fourth digit ...| = 1. 28
 1, 10, 12, 21, 23, 32, 34, 43, 45, 54, 56, 65, 67, 76, 78, 87, 89, 98, 100, 111, 120, 122, 131, 133, 142, 144, 153, 155, 164, 166, 175, 177, 186, 188, 197, 199, 210, 221, 230, 232, 241, 243, 252, 254, 263, 265, 274, 276, 285, 287, 296, 298, 320, 331, 340, 342 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Multiples of 11 plus or minus 1. If 11k+1 is a perfect square (see A219257) then a(n) is the square root of 11k+1. [Gary Detlefs, Feb 22 2010] LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 EXAMPLE 120 is in the sequence since |1-2+0| = 1. MATHEMATICA fQ[n_] := Abs[Plus @@ (((-1)^Range[Floor[Log[10, n] + 1]])*IntegerDigits@n)] == 1; Select[ Range@342, fQ@# &] PROG (PARI) altsum(v)=sum(i=1, #v, v[i]*(-1)^i) is(n)=abs(altsum(digits(n)))==1 \\ Charles R Greathouse IV, May 21 2014 (Python) def ok(n): return abs(sum(int(di)*(-1)**i for i, di in enumerate(str(n)))) == 1 print([k for k in range(343) if ok(k)]) # Michael S. Branicky, Jan 26 2023 CROSSREFS Cf. A008593, A060978-A060980, A060982, A061470-A061479, A061870-A061882. Subsequence of A175885. Sequence in context: A366958 A341002 A175885 * A348056 A120001 A108703 Adjacent sequences: A061867 A061868 A061869 * A061871 A061872 A061873 KEYWORD nonn,base,easy AUTHOR Robert G. Wilson v, May 10 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 16:36 EDT 2024. Contains 372765 sequences. (Running on oeis4.)