OFFSET
1,1
COMMENTS
The number of divisors of n-th perfect number that are powers of 2 is equal to a(n)/2, assuming there are no odd perfect numbers. The number of divisors of n-th perfect number that are multiples of n-th Mersenne prime A000668(n) is also equal to a(n)/2, assuming there are no odd perfect numbers. (See A000043). - Omar E. Pol, Feb 28 2008
The n-th even perfect number A000396(n) = 2^(p-1)*P with Mersenne prime P = 2^p-1, p = A000043(n), has obviously the 2p divisors { 1, 2, 2^2, ..., 2^(p-1) } U { P, 2*P, ..., 2^(p-1)*P }. - M. F. Hasler, Dec 10 2018
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..48 (terms 1..47 from Ivan Panchenko)
Omar E. Pol, Los números perfectos, (in Spanish).
FORMULA
a(n) = floor{log_2(A000396(n))} + 2. - Lekraj Beedassy, Aug 21 2004
a(n) = 2*A000043(n). - M. F. Hasler, Dec 05 2018
EXAMPLE
8128 = 2*2*2*2*2*2*127 with 14 divisors.
MATHEMATICA
2 * Array[MersennePrimeExponent, 45] (* Amiram Eldar, Dec 10 2018 *)
PROG
(PARI) A061645(n)=2*A000043(n) \\ with A000043(n)=[...][n], the dots being replaced by DATA from A000043. - M. F. Hasler, Dec 05 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jun 14 2001
EXTENSIONS
Definition changed (inserting the word "even") by Ivan Panchenko, Apr 16 2018
a(38)-a(39) from Ivan Panchenko, Apr 16 2018
STATUS
approved