The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061141 Compute sum of divisors of the prime(n+1)-prime(n)-1 composite numbers between two consecutive primes; choose the largest. 3
7, 12, 18, 28, 31, 39, 42, 60, 72, 91, 90, 96, 84, 124, 120, 168, 144, 144, 195, 168, 186, 224, 252, 217, 216, 210, 280, 248, 360, 255, 336, 288, 403, 372, 392, 378, 294, 480, 372, 546, 384, 508, 399, 468, 576, 600, 504, 560, 450, 546, 744, 504, 728, 588, 720 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,1
LINKS
Michael S. Branicky, Table of n, a(n) for n = 2..10001 (terms 2..1002 from Harry J. Smith)
FORMULA
a(n) = Max{sigma(c); p(n+1) > c > p(n)}, c is composite, p(n) is the n-th prime and sigma=A000203().
MATHEMATICA
Max[DivisorSigma[1, Range[#[[1]]+1, #[[2]]-1]]]&/@Partition[Prime[ Range[2, 60]], 2, 1] (* Harvey P. Dale, May 19 2017 *)
PROG
(PARI) { n=1; q=3; forprime (p=5, prime(1003), a=0; for (i=q + 1, p - 1, a=max(sigma(i), a)); q=p; write("b061141.txt", n++, " ", a) ) } \\ Harry J. Smith, Jul 18 2009
(Python)
from sympy import prime, divisor_sigma as sigma
def a(n): return max(sigma(c) for c in range(prime(n)+1, prime(n+1)))
print([a(n) for n in range(2, 57)]) # Michael S. Branicky, Jul 12 2021
CROSSREFS
Sequence in context: A022953 A030714 A190036 * A256381 A272975 A190495
KEYWORD
nonn
AUTHOR
Labos Elemer, May 29 2001
EXTENSIONS
Offset changed by Michael S. Branicky, Jul 12 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 22:02 EDT 2024. Contains 372765 sequences. (Running on oeis4.)