login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A256381 Numbers n such that n-3 and n+3 are semiprimes. 4
7, 12, 18, 36, 52, 54, 88, 90, 118, 126, 158, 180, 206, 212, 216, 218, 250, 256, 262, 292, 298, 302, 306, 324, 326, 332, 338, 358, 368, 374, 410, 414, 448, 450, 508, 514, 530, 532, 540, 548, 556, 562, 576, 586, 594, 626, 632, 652, 682, 684, 692, 700, 710, 720 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

All but the first term are even.

LINKS

Table of n, a(n) for n=1..54.

MATHEMATICA

Select[Range[750], PrimeOmega[# + 3] == PrimeOmega[# - 3] == 2 &] (* Vincenzo Librandi, Mar 28 2015 *)

SequencePosition[Table[If[PrimeOmega[n]==2, 1, 0], {n, 800}], {1, _, _, _, _, _, 1}][[All, 1]]+3 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 21 2017 *)

PROG

(PARI) lista(nn, m=3) = {for (n=m+1, nn, if (bigomega(n-m)==2 && bigomega(n+m)==2, print1(n, ", ")); ); }

(Magma) IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [4..750] | IsSemiprime(n+3) and IsSemiprime(n-3) ]; // Vincenzo Librandi, Mar 28 2015

CROSSREFS

Cf. A001358 (semiprimes).

Cf. A124936 (n-1 and n+1), A105571 (n-2 and n+2).

Cf. A256382 (n-4 and n+4), A256383 (n-5 and n+5).

Sequence in context: A030714 A190036 A061141 * A272975 A190495 A271988

Adjacent sequences: A256378 A256379 A256380 * A256382 A256383 A256384

KEYWORD

nonn

AUTHOR

Michel Marcus, Mar 27 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 03:51 EST 2022. Contains 358362 sequences. (Running on oeis4.)