login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060649 Smallest number k==3 (mod 4) such that Q(sqrt(-k)) has class number n, or 0 if no such k exists. 5
3, 15, 23, 39, 47, 87, 71, 95, 199, 119, 167, 231, 191, 215, 239, 399, 383, 335, 311, 455, 431, 591, 647, 695, 479, 551, 983, 831, 887, 671, 719, 791, 839, 1079, 1031, 959, 1487, 1199, 1439, 1271, 1151, 1959, 1847, 1391, 1319, 2615, 3023, 1751, 1511, 1799 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
From Jianing Song, May 08 2021: (Start)
Conjecture 1: a(n) > 0 for all n;
Conjecture 2: a(n) = o(n^2). (End)
Conjecture: this is also the smallest absolute value of negative fundamental discriminant d for class number n. This is to say, for even n, if a(n) > 0 and A344072(n/2) > 0, then A344072(n/2) > a(n). - Jianing Song, Oct 03 2022
LINKS
Eric Weisstein's World of Mathematics, Class Number.
MATHEMATICA
(* First do <<NumberTheory`NumberTheoryFunctions` *) a=Table[0, {50}]; Do[If[SquareFreeQ[n], c=ClassNumber[ -n]; If[c<=50&&a[[c]]==0, a[[c]]=n]], {n, 3, 3200, 4}]; a
PROG
(PARI) a(n) = my(d=3); while(!isfundamental(-d) || qfbclassno(-d)!=n, d+=4); d \\ Jianing Song, May 08 2021
CROSSREFS
Sequence in context: A106403 A225365 A225060 * A344073 A366956 A009210
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Apr 17 2001
EXTENSIONS
Edited by Dean Hickerson, Mar 17 2003
Escape clause added by Jianing Song, May 08 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 11 14:49 EDT 2024. Contains 375836 sequences. (Running on oeis4.)