|
|
A060649
|
|
Smallest number k==3 (mod 4) such that Q(sqrt(-k)) has class number n, or 0 if no such k exists.
|
|
5
|
|
|
3, 15, 23, 39, 47, 87, 71, 95, 199, 119, 167, 231, 191, 215, 239, 399, 383, 335, 311, 455, 431, 591, 647, 695, 479, 551, 983, 831, 887, 671, 719, 791, 839, 1079, 1031, 959, 1487, 1199, 1439, 1271, 1151, 1959, 1847, 1391, 1319, 2615, 3023, 1751, 1511, 1799
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Conjecture 1: a(n) > 0 for all n;
Conjecture 2: a(n) = o(n^2). (End)
Conjecture: this is also the smallest absolute value of negative fundamental discriminant d for class number n. This is to say, for even n, if a(n) > 0 and A344072(n/2) > 0, then A344072(n/2) > a(n). - Jianing Song, Oct 03 2022
|
|
LINKS
|
|
|
MATHEMATICA
|
(* First do <<NumberTheory`NumberTheoryFunctions` *) a=Table[0, {50}]; Do[If[SquareFreeQ[n], c=ClassNumber[ -n]; If[c<=50&&a[[c]]==0, a[[c]]=n]], {n, 3, 3200, 4}]; a
|
|
PROG
|
(PARI) a(n) = my(d=3); while(!isfundamental(-d) || qfbclassno(-d)!=n, d+=4); d \\ Jianing Song, May 08 2021
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|