login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A009210
Expansion of e.g.f.: exp(sin(x)*cos(x)).
1
1, 1, 1, -3, -15, -23, 177, 1253, 1057, -37103, -245471, 371085, 15691665, 76436089, -608056239, -10302629131, -20287425215, 856245051169, 8821231566145, -29959421725155, -1376333505095631, -7591883371988471, 139148719952772849
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{j=0..(n-1)/2} 2^(4*j-n+1)*(Sum_{i=0..(n-2*j)/2} (2*i+2*j-n)^n*binomial(n-2*j,i)*(-1)^(n-j-i))/(n-2*j)!, n>0, a(0)=1. - Vladimir Kruchinin, May 29 2011
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-1,2*k) * (-4)^k * a(n-2*k-1). - Ilya Gutkovskiy, Feb 24 2022
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[Sin[x]*Cos[x]], {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Aug 10 2021 *)
PROG
(Maxima)
a(n):=sum((2^(4*j-n+1)*sum((2*i+2*j-n)^n*binomial(n-2*j, i)*(-1)^(n-j-i), i, 0, ((n-2*j)/2)))/(n-2*j)!, j, 0, ((n-1)/2)); /* Vladimir Kruchinin, May 29 2011 */
(PARI) x='x+O('x^66); Vec(serlaplace(exp(sin(x)*cos(x)))) /* Joerg Arndt, May 29 2011 */
CROSSREFS
Sequence in context: A060649 A344073 A366956 * A142882 A161467 A101133
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
Definition corrected by Joerg Arndt, May 29 2011
Definition clarified and prior Mathematica program replaced by Harvey P. Dale, Aug 10 2021
STATUS
approved