The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060647 Number of alpha-beta evaluations in a tree of depth n and branching factor b=3. 4
 1, 3, 5, 11, 17, 35, 53, 107, 161, 323, 485, 971, 1457, 2915, 4373, 8747, 13121, 26243, 39365, 78731, 118097, 236195, 354293, 708587, 1062881, 2125763, 3188645, 6377291, 9565937, 19131875, 28697813, 57395627, 86093441, 172186883 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES P. H. Winston, Artificial Intelligence, Addison-Wesley, 1977, pp. 115-122, (alpha-beta technique). LINKS Harry J. Smith, Table of n, a(n) for n = 0..500 Index entries for linear recurrences with constant coefficients, signature (1, 3, -3). FORMULA a(2n) = 2*(3^n) - 1, a(2n+1) = 3^n + 3^(n+1) - 1. Formula for b branches: a(2n) = 2*(b^n)-1, a(2n+1) = b^n+b^(n+1)-1. a(n) = A068911(n+1) - 1. G.f.: (1+2*z-z^2)/((1-z)*(1-3*z^2)). - Emeric Deutsch, Nov 18 2002 a(n) = (sqrt(3))^n(1+2/sqrt(3))+(1-2/sqrt(3))(-sqrt(3))^n-1. - Paul Barry, Apr 17 2004 a(2n+1) = 3*a(2n-1) + 2; a(2n) = (a(2n-1) + a(2n+1))/2, with a(1)= 1. See A062318 for case where a(1)= 0. a(n) = (2^((1+(-1)^n)/2))*(b^((2*n-1+(-1)^n)/4))+((1-(-1)^n)/2)*(b^((2*n+1-(-1)^n)/4))-1, with b=3. - Luce ETIENNE, Aug 30 2014 EXAMPLE a(2n+1) = 2*a(2n) + 1, a(15) = a(2*7+1) = 2*a(14) + 1 = 2*4373 + 1 = 8747. MAPLE A060647 := proc(n, b) option remember: if n mod 2 = 0 then RETURN(2*b^(n/2)-1) else RETURN(b^((n-1)/2) +b^((n+1)/2)-1) fi: end: for n from 0 to 60 do printf(`%d, `, A060647(n, 3)) od: a[0]:=1:a[1]:=3:for n from 2 to 100 do a[n]:=3*a[n-2]+2 od: seq(a[n], n=0..33); # Zerinvary Lajos, Mar 17 2008 MATHEMATICA f[n_] := Simplify[Sqrt[3]^n(1 + 2/Sqrt[3]) + (1 - 2/Sqrt[3])(-Sqrt[3])^n - 1]; Table[ f[n], {n, 0, 34}] (* or *) f[n_] := If[ EvenQ[n], 2(3^(n/2)) - 1, 3^((n - 1)/2) + 3^((n + 1)/2) - 1]; Table[ f[n], {n, 0, 34}] (* or *) CoefficientList[ Series[(1 + 2x - x^2)/((1 - x)(1 - 3x^2)), {x, 0, 35}], x] (* Robert G. Wilson v, Nov 17 2005 *) PROG (PARI) { for (n=0, 500, if (n%2==0, a=2*(3^(n/2)) - 1, m=(n - 1)/2; a=3^m + 3^(m + 1) - 1); write("b060647.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 09 2009 CROSSREFS For b=2 see A052955. Cf. A068911. Sequence in context: A006171 A261674 A319632 * A320353 A155989 A125557 Adjacent sequences: A060644 A060645 A060646 * A060648 A060649 A060650 KEYWORD easy,nonn AUTHOR Frank Ellermann, Apr 17 2001 EXTENSIONS More terms from James A. Sellers, Apr 19 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 17:32 EST 2023. Contains 367540 sequences. (Running on oeis4.)