The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060597 Number of 6-dimensional tilings of unary zonotopes. The zonotope Z(D,d) is the projection of the D-dimensional hypercube onto the d-dimensional space and the tiles are the projections of the d-dimensional faces of the hypercube. Here d=6 and D varies. 0
 1, 2, 16, 1646 (list; graph; refs; listen; history; text; internal format)
 OFFSET 6,2 REFERENCES A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G.M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46 Second Edition, Cambridge University Press, 1999 N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190. Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999. LINKS EXAMPLE For any d, the only possible tile for Z(d,d) is Z(d,d) itself, therefore the first term of the series is 1. It is well known that there are always two d-tilings of Z(d+1,d), therefore the second term is 2. More examples are available on my web page. CROSSREFS Cf. A006245 (two-dimensional tilings), A060595-A060602. Column k=6 of A060637. Sequence in context: A125791 A102103 A326974 * A091479 A016031 A001309 Adjacent sequences:  A060594 A060595 A060596 * A060598 A060599 A060600 KEYWORD nonn,nice AUTHOR Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 12 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 23:37 EST 2020. Contains 330995 sequences. (Running on oeis4.)