%I
%S 1,2,16,1646
%N Number of 6dimensional tilings of unary zonotopes. The zonotope Z(D,d) is the projection of the Ddimensional hypercube onto the ddimensional space and the tiles are the projections of the ddimensional faces of the hypercube. Here d=6 and D varies.
%D A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G.M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46 Second Edition, Cambridge University Press, 1999
%D N. Destainville, R. Mosseri and F. Bailly, Fixedboundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 12, 147190.
%D Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 19961997), 293336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
%H M. Latapy, <a href="https://arxiv.org/abs/math/0008022">Generalized Integer Partitions, Tilings of Zonotopes and Lattices</a>
%e For any d, the only possible tile for Z(d,d) is Z(d,d) itself, therefore the first term of the series is 1. It is well known that there are always two dtilings of Z(d+1,d), therefore the second term is 2. More examples are available on my web page.
%Y Cf. A006245 (twodimensional tilings), A060595A060602.
%Y Column k=6 of A060637.
%K nonn,nice
%O 6,2
%A Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 12 2001
