Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Jul 24 2023 15:10:04
%S 1,2,16,1646,16930560,665354510109750
%N Number of tilings of the 6-dimensional zonotope constructed from D vectors.
%C The zonotope Z(D,d) is the projection of the D-dimensional hypercube onto the d-dimensional space and the tiles are the projections of the d-dimensional faces of the hypercube. Here d=6 and D varies.
%C Also the number of signotopes of rank 7. A signotope of rank r is a mapping X:{{1..n} choose r}->{+,-} such that for any r+1 indices I={i_0,...,i_r} with i_0 < i_1 < ... < i_r, the sequence X(I-i_0), X(I-i_1), ..., X(I-i_r) changes its sign at most once (see Felsner-Weil reference). - _Manfred Scheucher_, Feb 09 2022
%D A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G.M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46 Second Edition, Cambridge University Press, 1999.
%D Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
%H N. Destainville, R. Mosseri and F. Bailly, <a href="https://arxiv.org/abs/cond-mat/0004145">Fixed-boundary octagonal random tilings: a combinatorial approach</a>, arXiv:cond-mat/0004145 [cond-mat.stat-mech], 2000.
%H N. Destainville, R. Mosseri and F. Bailly, <a href="https://doi.org/10.1023/A:1026564710037">Fixed-boundary octagonal random tilings: a combinatorial approach</a>, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
%H S. Felsner and H. Weil, <a href="http://doi.org/10.1016/S0166-218X(00)00232-8">Sweeps, arrangements and signotopes</a>, Discrete Applied Mathematics, Volume 109, Issues 1-2, 2001, Pages 67-94.
%H M. Latapy, <a href="https://arxiv.org/abs/math/0008022">Generalized Integer Partitions, Tilings of Zonotopes and Lattices</a>, arXiv:math/0008022 [math.CO], 2000.
%H Manfred Scheucher, <a href="/A060597/a060597.cpp.txt">C++ program for enumeration</a>.
%H G. M. Ziegler, <a href="https://www.mi.fu-berlin.de/math/groups/discgeom/ziegler/Preprintfiles/025PREPRINT.pdf">Higher Bruhat Orders and Cyclic Hyperplane Arrangements</a>, Topology, Volume 32, 1993.
%F Asymptotics: a(n) = 2^(Theta(n^6)). This is Bachmann-Landau notation, that is, there are constants n_0, c, and d, such that for every n >= n_0 the inequality 2^{c n^6} <= a(n) <= 2^{d n^6} is satisfied. - _Manfred Scheucher_, Sep 22 2021
%e For any d, the only possible tile for Z(d,d) is Z(d,d) itself, therefore the first term of the series is 1. It is well known that there are always two d-tilings of Z(d+1,d), therefore the second term is 2. More examples are available on my web page.
%Y Cf. A006245 (two-dimensional tilings), A060595-A060602.
%Y Column k=6 of A060637.
%K nonn,nice
%O 6,2
%A Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 12 2001
%E a(10) from _Manfred Scheucher_, Sep 21 2021
%E Edited by _Manfred Scheucher_, Mar 08 2022
%E a(11) from _Manfred Scheucher_, Jul 17 2023