login
A059926
Length of period of the continued fraction expansion of sqrt(2^n+1).
5
1, 4, 1, 10, 1, 16, 1, 44, 1, 74, 1, 46, 1, 204, 1, 714, 1, 702, 1, 908, 1, 404, 1, 7754, 1, 1136, 1, 9886, 1, 8154, 1, 23578, 1, 65096, 1, 404762, 1, 23992, 1, 3514774, 1, 110124, 1, 4802160, 1, 6490450, 1, 180832, 1, 115972, 1, 770304, 1, 62665998, 1, 133093360, 1, 1019300318, 1, 60079334
OFFSET
4,2
COMMENTS
For n=1,2 a(1)=2, a(2)=1; for n=3 it is not a quadratic surd.
LINKS
FORMULA
a(n) = A003285(A000051(n)). - Michel Marcus, Sep 27 2019
EXAMPLE
For n=7 and n=8 the periods after the transient are as follows: cfrac(sqrt(2^7+1),'periodic','quotients'); gives [[11], [2, 1, 3, 1, 6, 1, 3, 1, 2, 22]] cfrac(sqrt(2^8+1),'periodic','quotients'); gives [[16], [32]]
MAPLE
with(numtheory): [seq(nops(cfrac(sqrt(2^k+1), 'periodic', 'quotients')[2]), k=4..28)];
MATHEMATICA
Table[Length[ContinuedFraction[Sqrt[2^n+1]][[2]]], {n, 4, 60}] (* Harvey P. Dale, Feb 05 2012 *)
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Labos Elemer, Mar 01 2001
EXTENSIONS
Two more terms from David W. Wilson, Jun 18 2001
Corrected and extended by Naohiro Nomoto, Nov 09 2001
a(58)-a(63) from Daniel Suteu, Jan 25 2019
STATUS
approved