OFFSET
1,2
COMMENTS
A kind of discrete exponential, since the series of n-th differences resembles the original sequence. The principle of construction is F(a(n+1)) > G(a(n)) as in A059842 but slightly modified to F(n,a(n+1)) > F(n+1,a(n)) with F(n,x) = x^n. This seems to be a fruitful construction principle!
LINKS
T. D. Noe, Table of n, a(n) for n = 1..300
FORMULA
a(n+1) = floor( a(n)^(1+1/n) ) + 1; compare A080870. - Paul D. Hanna, Feb 21 2003
a(n) = floor(x^n), where x=1.53885131519173... - Paul D. Hanna, Feb 21 2003
EXAMPLE
We have a(5)=8 and therefore a(6) = 13 because 13^5 > 8^6.
MAPLE
a := proc(n) option remember: if n=1 then RETURN(1) fi: if n=2 then RETURN(2) fi: ceil(a(n-1)^((n)/(n-1))): end: Digits := 20: for n from 1 to 250 do printf(`%d, `, a(n)) od:
MATHEMATICA
a[n_] := a[n] = Floor[a[n-1]^(1+1/(n-1))]+1; a[1] = 1; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 03 2014, after Paul D. Hanna *)
nxt[{n_, a_}]:={n+1, Floor[a^(1+1/n)]+1}; NestList[nxt, {1, 1}, 40][[All, 2]] (* Harvey P. Dale, Aug 11 2019 *)
PROG
(PARI) { default(realprecision, 200); a=1; for (n=1, 300, write("b059923.txt", n, " ", a); a=floor(a^(1 + 1/n)) + 1; ) } \\ Harry J. Smith, Jun 30 2009
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
Rainer Rosenthal, Mar 03 2001
EXTENSIONS
More terms from James A. Sellers, Mar 15 2001
STATUS
approved