login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059923
a(n+1) is smallest number with a(n+1)^n > a(n)^(n+1).
3
1, 2, 3, 5, 8, 13, 20, 31, 48, 74, 114, 176, 271, 417, 642, 988, 1521, 2341, 3603, 5545, 8533, 13131, 20207, 31096, 47853, 73639, 113320, 174383, 268350, 412951, 635471, 977896, 1504837, 2315721, 3563551, 5483776, 8438716, 12985930, 19983416
OFFSET
1,2
COMMENTS
A kind of discrete exponential, since the series of n-th differences resembles the original sequence. The principle of construction is F(a(n+1)) > G(a(n)) as in A059842 but slightly modified to F(n,a(n+1)) > F(n+1,a(n)) with F(n,x) = x^n. This seems to be a fruitful construction principle!
FORMULA
a(n+1) = floor( a(n)^(1+1/n) ) + 1; compare A080870. - Paul D. Hanna, Feb 21 2003
a(n) = floor(x^n), where x=1.53885131519173... - Paul D. Hanna, Feb 21 2003
EXAMPLE
We have a(5)=8 and therefore a(6) = 13 because 13^5 > 8^6.
MAPLE
a := proc(n) option remember: if n=1 then RETURN(1) fi: if n=2 then RETURN(2) fi: ceil(a(n-1)^((n)/(n-1))): end: Digits := 20: for n from 1 to 250 do printf(`%d, `, a(n)) od:
MATHEMATICA
a[n_] := a[n] = Floor[a[n-1]^(1+1/(n-1))]+1; a[1] = 1; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 03 2014, after Paul D. Hanna *)
nxt[{n_, a_}]:={n+1, Floor[a^(1+1/n)]+1}; NestList[nxt, {1, 1}, 40][[All, 2]] (* Harvey P. Dale, Aug 11 2019 *)
PROG
(PARI) { default(realprecision, 200); a=1; for (n=1, 300, write("b059923.txt", n, " ", a); a=floor(a^(1 + 1/n)) + 1; ) } \\ Harry J. Smith, Jun 30 2009
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
Rainer Rosenthal, Mar 03 2001
EXTENSIONS
More terms from James A. Sellers, Mar 15 2001
STATUS
approved