The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A216053 a(n) is the position of the last two-tuple within the reverse lexicographic set of partitions of 2n and 2n+1, with a(1)-a(n) representing the positions of every 2-tuple partition of 2n and 2n+1. 5
2, 3, 5, 8, 13, 20, 31, 46, 68, 98, 140, 196, 273, 374, 509, 685, 916, 1213, 1598, 2088, 2715, 3507, 4509, 5764, 7339, 9297, 11733, 14743, 18461, 23026, 28630, 35472, 43821, 53964, 66274, 81157, 99134, 120771, 146786, 177971, 215309, 259892, 313066, 376327 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
FORMULA
a(n) ~ exp(Pi*sqrt(2*n/3)) / (Pi*2^(3/2)*sqrt(n)). - Vaclav Kotesovec, May 24 2018
a(n) = A330661(2n,2) = A330661(2n+1,2). - Alois P. Heinz, Feb 20 2020
EXAMPLE
With n = 3, 2n = 6. The partitions of 6 are {{6}, {5,1}, {4,2}, {4,1,1}, {3,3}, {3,2,1}, {3,1,1,1}, {2,2,2}, {2,2,1,1}, {2,1,1,1,1}, {1,1,1,1,1,1}}. The last 2-tuple is located at position 5. The positions of all 2-tuples are 2, 3, and 5.
MATHEMATICA
RecurrenceTable[{a[n+1] == a[n] + PartitionsP[(n)], a[1] == 2}, a, {n, 1, 44}]
CROSSREFS
A diagonal of A181187.
Sequence in context: A200462 A088795 A156145 * A361721 A173597 A059923
KEYWORD
nonn
AUTHOR
J. Stauduhar, Oct 12 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 13:43 EDT 2024. Contains 372788 sequences. (Running on oeis4.)