login
A200462
Number of 0..1 arrays x(0..n-1) of n elements with each no smaller than the sum of its four previous neighbors modulo 2.
1
2, 3, 5, 8, 13, 20, 29, 43, 63, 91, 130, 184, 262, 370, 519, 724, 1010, 1408, 1955, 2705, 3735, 5157, 7107, 9775, 13418, 18406, 25227, 34529, 47200, 64455, 87969, 119952, 163415, 222427, 302568, 411334, 558808, 758640, 1029312, 1395882, 1891970
OFFSET
1,1
LINKS
FORMULA
a(n) - a(n + 1) + a(n + 3) + a(n + 4) - 5*a(n + 5) + 2*a(n + 6) + 2*a(n + 7) - 2*a(n + 8) - 2*a(n + 9) + 5*a(n + 10) - a(n + 11) - 2*a(n + 12) + 2*a(n + 13) - 2*a(n + 15) + a(n + 16) = 0. - Robert Israel, Dec 11 2023
EXAMPLE
Some solutions for n=6:
0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1
0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1
1 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0
1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0
0 1 0 1 1 0 1 1 1 1 1 0 0 0 0 1
0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 0
MAPLE
Configs:= [seq(convert(16+i, base, 2)[1..4], i=0..15)]:
Compatible:= proc(i, j)
if not Configs[i][2..4]=Configs[j][1..3] then return 0 fi;
if convert(Configs[i], `+`) mod 2 <= Configs[j][4]
then 1 else 0
fi
end proc:
T:= Matrix(16, 16, Compatible):
initconfigs:= select(t -> t[1] <= t[2] and t[1]+t[2] mod 2 <= t[3] and t[1]+t[2]+t[3] mod 2 <= t[4], Configs):
u0:= Vector(16, i -> `if`(member(Configs[i], initconfigs), 1, 0)):
2, 3, 5, 8, seq(u0^%T . T^i . e, i=1..40); # Robert Israel, Dec 11 2023
CROSSREFS
Column 1 of A200469.
Sequence in context: A326594 A045842 A324741 * A088795 A156145 A216053
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 18 2011
STATUS
approved