|
|
A059242
|
|
Numbers n such that 2^n + 5 is prime.
|
|
18
|
|
|
1, 3, 5, 11, 47, 53, 141, 143, 191, 273, 341, 16541, 34001, 34763, 42167, 193965, 282203
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The subsequence of primes starts 3, 5, 11, 47, 53, 191, ... - Vincenzo Librandi, Aug 07 2010
For k in this sequence, 2^(k-1)*(2^k+5) is in A141548: numbers of deficiency 6. - M. F. Hasler, Apr 23 2015
a(18) > 5*10^5. - Robert Price, Aug 23 2015
a(18) > 6*10^5. - Tyler NeSmith, Jan 18 2021
|
|
LINKS
|
Table of n, a(n) for n=1..17.
Keith Conrad, Square patterns and infinitude of primes, University of Connecticut, 2019.
Henri Lifchitz and Renaud Lifchitz (Editors), PRP Top Records, of the form 2^n+5.
|
|
EXAMPLE
|
2^3 + 5 = 13 is prime but 2^4 + 5 = 21 is not.
|
|
MATHEMATICA
|
Select[Range[20000], PrimeQ[2^#+5]&] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2011 *)
|
|
PROG
|
(PARI) is(n)=ispseudoprime(2^n+5) \\ M. F. Hasler, Apr 23 2015
|
|
CROSSREFS
|
Sequence in context: A332968 A144467 A049883 * A175173 A268510 A004203
Adjacent sequences: A059239 A059240 A059241 * A059243 A059244 A059245
|
|
KEYWORD
|
nonn,hard,more
|
|
AUTHOR
|
Tony Davie (ad(AT)dcs.st-and.ac.uk), Jan 21 2001
|
|
EXTENSIONS
|
More terms from Santi Spadaro, Oct 04 2002
a(12) from Hans Havermann, Oct 07 2002
a(13)-a(15) from Charles R Greathouse IV, Oct 07 2011
a(16)-a(17) from Robert Price, Dec 06 2013
|
|
STATUS
|
approved
|
|
|
|