|
|
A058582
|
|
Expansion of (1+3*x+4*x^2)/(1-4*x^2+4*x^4).
|
|
2
|
|
|
1, 3, 8, 12, 28, 36, 80, 96, 208, 240, 512, 576, 1216, 1344, 2816, 3072, 6400, 6912, 14336, 15360, 31744, 33792, 69632, 73728, 151552, 159744, 327680, 344064, 704512, 737280, 1507328, 1572864, 3211264, 3342336, 6815744, 7077888
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Is a(n) the (n-1)-st elementary symmetric function of first n terms of (2,1,2,1,2,1,2,...)? See the Mathematica section. [Clark Kimberling, Dec 29 2011]
|
|
LINKS
|
Table of n, a(n) for n=0..35.
|
|
FORMULA
|
a(n) = A032766(n+1)*A016116(n). - Philippe Deléham, Oct 11 2014
|
|
EXAMPLE
|
a(0) = 1*1 = 1, a(1) = 3*1 = 3, a(2) = 4*2 = 8, a(3) = 6*2 = 12, a(4) = 7*4 = 28, a(5) = 9*4 = 36, a(6) = 10*8 = 80, a(7) = 12*8 = 96, a(8) = 13*16 = 208, ... - Philippe Deléham, Oct 11 2014
|
|
MATHEMATICA
|
f[k_] := 1 + Mod[k, 2]; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 33}]
(* Clark Kimberling, Dec 29 2011 *)
|
|
PROG
|
(PARI) Vec((1+3*x+4*x^2)/(1-4*x^2+4*x^4)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
|
|
CROSSREFS
|
a(n)=T(n, 1), array T as in A064861.
Sequence in context: A092954 A114803 A083171 * A178720 A027292 A032304
Adjacent sequences: A058579 A058580 A058581 * A058583 A058584 A058585
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane, Dec 26 2000
|
|
STATUS
|
approved
|
|
|
|