The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A058584 McKay-Thompson series of class 24a for Monster. 1
 1, -5, -5, -9, -14, -19, -34, -55, -69, -104, -164, -209, -283, -413, -539, -712, -968, -1248, -1642, -2167, -2731, -3526, -4592, -5736, -7244, -9255, -11520, -14378, -18018, -22238, -27556, -34132, -41701, -51184, -62900, -76323, -92771, -113002, -136421, -164673, -198842, -238627 (list; graph; refs; listen; history; text; internal format)
 OFFSET -1,2 LINKS G. C. Greubel, Table of n, a(n) for n = -1..1000 D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994). Index entries for McKay-Thompson series for Monster simple group FORMULA Expansion of A - 4*q/A, where A = q^(1/2)*(eta(q)*eta(q^3)/(eta(q^4)* eta(q^12))), in powers of q. - G. C. Greubel, Jun 21 2018 a(n) ~ -exp(sqrt(2*n/3)*Pi) / (2^(5/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 29 2018 EXAMPLE T24a = 1/q - 5*q - 5*q^3 - 9*q^5 - 14*q^7 - 19*q^9 - 34*q^11 - 55*q^13 - ... MATHEMATICA eta[q_] := q^(1/24)*QPochhammer[q]; A:= q^(1/2)*(eta[q]*eta[q^3]/( eta[q^4]*eta[q^12])); a:= CoefficientList[Series[A - 4*q/A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 21 2018 *) PROG (PARI) q='q+O('q^50); A = (eta(q)*eta(q^3)/(eta(q^4)* eta(q^12))); Vec(A - 4*q/A) \\ G. C. Greubel, Jun 21 2018 CROSSREFS Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc. Cf. A058491. Sequence in context: A011986 A047880 A058491 * A324792 A147197 A323301 Adjacent sequences: A058581 A058582 A058583 * A058585 A058586 A058587 KEYWORD sign AUTHOR N. J. A. Sloane, Nov 27 2000 EXTENSIONS Terms a(12) onward added by G. C. Greubel, Jun 21 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 9 16:40 EDT 2024. Contains 375765 sequences. (Running on oeis4.)