|
|
A058584
|
|
McKay-Thompson series of class 24a for Monster.
|
|
1
|
|
|
1, -5, -5, -9, -14, -19, -34, -55, -69, -104, -164, -209, -283, -413, -539, -712, -968, -1248, -1642, -2167, -2731, -3526, -4592, -5736, -7244, -9255, -11520, -14378, -18018, -22238, -27556, -34132, -41701, -51184, -62900, -76323, -92771, -113002, -136421, -164673, -198842, -238627
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
-1,2
|
|
LINKS
|
|
|
FORMULA
|
Expansion of A - 4*q/A, where A = q^(1/2)*(eta(q)*eta(q^3)/(eta(q^4)* eta(q^12))), in powers of q. - G. C. Greubel, Jun 21 2018
a(n) ~ -exp(sqrt(2*n/3)*Pi) / (2^(5/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 29 2018
|
|
EXAMPLE
|
T24a = 1/q - 5*q - 5*q^3 - 9*q^5 - 14*q^7 - 19*q^9 - 34*q^11 - 55*q^13 - ...
|
|
MATHEMATICA
|
eta[q_] := q^(1/24)*QPochhammer[q]; A:= q^(1/2)*(eta[q]*eta[q^3]/( eta[q^4]*eta[q^12])); a:= CoefficientList[Series[A - 4*q/A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 21 2018 *)
|
|
PROG
|
(PARI) q='q+O('q^50); A = (eta(q)*eta(q^3)/(eta(q^4)* eta(q^12))); Vec(A - 4*q/A) \\ G. C. Greubel, Jun 21 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|