login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058254 a(n) = lcm{prime(i)-1, i=1..n}. 7
1, 2, 4, 12, 60, 60, 240, 720, 7920, 55440, 55440, 55440, 55440, 55440, 1275120, 16576560, 480720240, 480720240, 480720240, 480720240, 480720240, 480720240, 19709529840, 19709529840, 39419059680, 197095298400, 3350620072800 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A002110(n) divides b^(a(n)+1) - b for every integer b. - Thomas Ordowski, Nov 24 2014

What is the asymptotic growth of this sequence? a(n) <= A005867(n) <= A002110(n) < e^((1 + o(1))n log n) but this is a large overestimate. - Charles R Greathouse IV, Dec 03 2014

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..1000

FORMULA

a(n) = A002322(A002110(n)). - Thomas Ordowski, Nov 24 2014

EXAMPLE

For n = 5 and 6: a(5) = a(6) = LCM[1, 2, 4, 6, 10, 12] = 60.

MAPLE

seq(ilcm(seq(ithprime(i)-1, i=1..n)), n=1..100); # Robert Israel, Nov 24 2014

MATHEMATICA

Table[LCM @@ (Prime@ Range[1, n] - 1), {n, 27}] (* Michael De Vlieger, Dec 31 2016 *)

PROG

(Haskell)

a058254 n = a058254_list !! (n-1)

a058254_list = scanl1 lcm a006093_list

-- Reinhard Zumkeller, May 01 2013

(PARI) a(n)=lcm(apply(p->p-1, primes(n))) \\ Charles R Greathouse IV, Dec 03 2014

CROSSREFS

Cf. A000010, A000142, A002110, A003418, A005867, A006093, A055769, A058255.

Sequence in context: A128648 A128646 A155747 * A076244 A058255 A118456

Adjacent sequences:  A058251 A058252 A058253 * A058255 A058256 A058257

KEYWORD

nonn

AUTHOR

Labos Elemer, Dec 06 2000

EXTENSIONS

Offset corrected by Reinhard Zumkeller, May 01 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 18 23:26 EST 2018. Contains 299330 sequences. (Running on oeis4.)