login
A128646
a(n) = denominator(Sum_{k=1..n} 1/(prime(k)-1)).
8
1, 2, 4, 12, 60, 10, 80, 720, 7920, 55440, 55440, 18480, 18480, 18480, 425040, 5525520, 160240080, 53413360, 160240080, 160240080, 480720240, 480720240, 19709529840, 19709529840, 39419059680, 197095298400, 3350620072800
OFFSET
1,2
COMMENTS
A120271(n) = numerator(Sum_{k=1..n} 1/(prime(k)-1)); A128648(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/(prime(k)-1)); numbers m such that a(m) = A128648(m) are listed in A128649.
LINKS
Eric Weisstein's World of Mathematics, Prime Sums
FORMULA
a(n) = denominator(Sum_{k=1..n} 1/(prime(k)-1)).
MATHEMATICA
Table[Denominator[Sum[1/(Prime[k]-1), {k, 1, n}]], {n, 1, 36}]
CROSSREFS
Cf. A120271 (numerator(Sum_{k=1..n} 1/(prime(k)-1))).
Cf. A128649, A128647, A128648 (denominator(Sum_{k=1..n} (-1)^(k+1)/(prime(k)-1))).
Sequence in context: A177921 A301481 A128648 * A155747 A058254 A076244
KEYWORD
frac,nonn
AUTHOR
Alexander Adamchuk, Mar 18 2007
STATUS
approved