login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128648
a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/(prime(k)-1)).
3
1, 2, 4, 12, 60, 5, 80, 720, 7920, 55440, 55440, 6160, 6160, 18480, 425040, 5525520, 160240080, 160240080, 53413360, 53413360, 480720240, 480720240, 19709529840, 19709529840, 39419059680, 197095298400, 3350620072800, 177582863858400
OFFSET
1,2
COMMENTS
Numbers m such that a(m) equals A128646(m) are listed in A128649.
LINKS
Eric Weisstein's World of Mathematics, Prime Sums
FORMULA
a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/(prime(k)-1)).
MATHEMATICA
Table[Denominator[Sum[(-1)^(k+1)*1/(Prime[k]-1), {k, 1, n}]], {n, 1, 36}]
CROSSREFS
Cf. A128647 (numerator(Sum_{k=1..n} (-1)^(k+1)/(prime(k)-1))).
Cf. A128646 (denominator(Sum_{k=1..n} 1/(prime(k)-1))).
Sequence in context: A000568 A177921 A301481 * A128646 A155747 A058254
KEYWORD
frac,nonn
AUTHOR
Alexander Adamchuk, Mar 18 2007
STATUS
approved