login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057877
a(n) = smallest n-digit prime in A057876.
2
23, 113, 1531, 12239, 111317, 1111219, 11119291, 111111197, 1111113173, 11111133017, 111111189919, 1111111411337, 11111111161177, 111111111263311, 1111111111149119, 11111111111179913, 111111111111118771, 1111111111111751371, 11111111111111111131, 111111111111113129773, 1111111111111111337111
OFFSET
2,1
EXAMPLE
1531 gives primes 53, 131 and 151 after dropping digits 1, 5 and 3.
MAPLE
filter:= proc(n) local L, d, Lp;
if not isprime(n) then return false fi;
L:= convert(n, base, 10);
for d in convert(L, set) do
Lp:= subs(d=NULL, L);
if Lp=[] or Lp[-1] = 0 then return false fi;
if not isprime(add(Lp[i]*10^(i-1), i=1..nops(Lp))) then return false fi;
od;
true
end proc:
Res:= NULL:
for t from 1 to 21 do
for x from (10^(t+1)-1)/9 by 2 do
if filter(x) then Res:= Res, x; break fi
od
od:
Res; # Robert Israel, Jul 13 2018
MATHEMATICA
Do[k = (10^n - 1)/9; While[d = IntegerDigits[k]; !PrimeQ[k] || !PrimeQ[ FromDigits[ DeleteCases[d, 0]]] || !PrimeQ[ FromDigits[ DeleteCases[d, 1]]] || !PrimeQ[ FromDigits[ DeleteCases[d, 2]]] || !PrimeQ[ FromDigits[ DeleteCases[d, 3]]] || !PrimeQ[ FromDigits[ DeleteCases[d, 4]]] || !PrimeQ[ FromDigits[ DeleteCases[d, 5]]] || !PrimeQ[ FromDigits[ DeleteCases[d, 6]]] || !PrimeQ[ FromDigits[ DeleteCases[d, 7]]] || !PrimeQ[ FromDigits[ DeleteCases[d, 8]]] || !PrimeQ[ FromDigits[ DeleteCases[d, 9]]], k++ ]; Print[k], {n, 2, 19}]
KEYWORD
base,nonn
AUTHOR
Patrick De Geest, Oct 15 2000
EXTENSIONS
Extended by Robert G. Wilson v, Dec 17 2002
More terms from Robert Israel, Jul 13 2018
STATUS
approved