login
A057880
Primes with 4 distinct digits that remain prime (no leading zeros allowed) after deleting all occurrences of its digits d.
2
6173, 12239, 16673, 19531, 19973, 21613, 22397, 22937, 34613, 36137, 47933, 51193, 54493, 56519, 56531, 56591, 69491, 69497, 72937, 76873, 93497, 96419, 96479, 96497, 98837, 112939, 118213, 131779, 143419, 144497, 159319, 163337
OFFSET
1,1
LINKS
MAPLE
filter:= proc(L) local d, Lp, i;
if L[-1]=0 then return false fi;
if not isprime(add(L[i]*10^(i-1), i=1..nops(L))) then return false fi;
for d in convert(L, set) do
Lp:= remove(`=`, L, d);
if Lp[-1] = 0 or not isprime(add(Lp[i]*10^(i-1), i=1..nops(Lp))) then return false fi;
od;
true
end proc:
getCands:= proc(n, m) option remember;
if m = 1 then return [seq([d$n], d=0..9)] fi;
if n < m then return [] fi;
[seq(seq([i, op(L)], i= {$0..9} minus convert(L, set)), L = procname(n-1, m-1)),
seq(seq([i, op(L)], i=convert(L, set)), L = procname(n-1, m))]
end proc:
[seq(op(sort(map(t->add(t[i]*10^(i-1), i=1..nops(t)), select(filter, getCands(d, 4))))), d=4..6)]; # Robert Israel, Jan 19 2017
MATHEMATICA
p4dQ[n_]:=Module[{idn=IntegerDigits[n]}, Count[idn, 0]==0 && Count[ DigitCount[ n], 0]==6&&AllTrue[FromDigits/@Table[DeleteCases[idn, k], {k, Union[idn]}], PrimeQ]]; Select[Prime[Range[ 15000]], p4dQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 30 2017 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Oct 15 2000
EXTENSIONS
Offset changed by Robert Israel, Jan 19 2017
STATUS
approved