login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056604
a(0)=1; thereafter a(n) = lcm(1, 2, 3, 4, ..., prime(n)).
9
1, 2, 6, 60, 420, 27720, 360360, 12252240, 232792560, 5354228880, 2329089562800, 72201776446800, 5342931457063200, 219060189739591200, 9419588158802421600, 442720643463713815200, 164249358725037825439200, 9690712164777231700912800, 591133442051411133755680800
OFFSET
0,2
COMMENTS
Previous name was: Values of lcm[1,...,m], m = prime, whose squarefree kernels give A002110.
a(n) can be used like A006939(n) for certain kinds of rounding. E.g., the Babylonian a(3) = 60 = 2*2*3*5 divides A006939(3) = 360 = 2*2*2*3*3*5. - Frank Ellermann, Dec 18 2001
a(342) has 1000 decimal digits. - Michael De Vlieger, Mar 05 2017
LINKS
FORMULA
a(n) = prime(n)^r(n) *...* prime(1)^r(1) for maximal prime(j)^r(j) <= prime(n).
a(n) = Product_{k=1..n} prime(k)^floor(log(prime(n))/log(prime(k))). - Daniel Suteu, Oct 09 2017
a(n) = A003418(prime(n)). - M. F. Hasler, Jan 04 2020
EXAMPLE
a(5) = lcm(1,2,...,10,11) = 27720, prime(5) = 11. Not all possible lcm(1,..,n) values of A003418 occur, e.g., 12, 840, 25520, etc. are not present. Their squarefree kernels gives exactly A002110.
MAPLE
a:= n-> ilcm(`if`(n=0, NULL, $1..ithprime(n))):
seq(a(n), n=0..20); # Alois P. Heinz, Dec 05 2014
MATHEMATICA
Table[If[n == 0, 1, LCM @@ Range@ Prime@ n], {n, 0, 18}] (* Michael De Vlieger, Mar 05 2017 *)
PROG
(PARI) a(n)=lcm(vector(prime(n), i, i)) \\ Charles R Greathouse IV, Oct 27 2013
(PARI) apply( A056604(n)=lcm([2..if(n, prime(n))]), [0..20]) \\ Or A056604(n) = A003418(prime(n)), might be more efficient. - M. F. Hasler, Jan 04 2020
(Magma) [1] cat [Lcm([2..p]): p in PrimesUpTo(65)]; // Bruno Berselli, Feb 08 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Aug 07 2000
EXTENSIONS
a(16) from Frank Ellermann, Dec 18 2001
New name from Charles R Greathouse IV, Oct 27 2013
More terms from Alois P. Heinz, Dec 05 2014
a(0)=1 added to definition by N. J. A. Sloane, Jan 05 2020
STATUS
approved