login
A056530
Sequence remaining after third round of Flavius Josephus sieve; remove every fourth term of A047241.
7
1, 3, 7, 13, 15, 19, 25, 27, 31, 37, 39, 43, 49, 51, 55, 61, 63, 67, 73, 75, 79, 85, 87, 91, 97, 99, 103, 109, 111, 115, 121, 123, 127, 133, 135, 139, 145, 147, 151, 157, 159, 163, 169, 171, 175, 181, 183, 187, 193, 195, 199, 205, 207, 211, 217, 219, 223, 229, 231
OFFSET
1,2
COMMENTS
Numbers {1, 3, 7} mod 12: A017533, A017557, A017605 interleaved.
FORMULA
From Chai Wah Wu, Jul 24 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 4.
G.f.: x*(5*x^3 + 4*x^2 + 2*x + 1)/(x^4 - x^3 - x + 1). (End)
a(n) = 4*n - (13 + 2*A131713(n))/3. - R. J. Mathar, Jun 22 2020
MATHEMATICA
LinearRecurrence[{1, 0, 1, -1}, {1, 3, 7, 13}, 60] (* Harvey P. Dale, Oct 19 2022 *)
CROSSREFS
We have A000027 after 0 rounds of sieving, A005408 after 1 round of sieving, A047241 after 2 rounds, A056530 after 3 rounds, A056531 after 4 rounds, A000960 after all rounds. After n rounds the remaining sequence comprises A002944(n) numbers mod A003418(n+1), i.e. 1/(n+1) of them.
Sequence in context: A310251 A035496 A310252 * A341447 A310253 A092734
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Jun 19 2000
STATUS
approved