The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055744 Numbers k such that k and phi(k) have the same prime factors. 22
 1, 4, 8, 16, 18, 32, 36, 50, 54, 64, 72, 100, 108, 128, 144, 162, 200, 216, 250, 256, 288, 294, 324, 400, 432, 450, 486, 500, 512, 576, 578, 588, 648, 800, 864, 882, 900, 972, 1000, 1014, 1024, 1152, 1156, 1176, 1210, 1250, 1296, 1350, 1458, 1600, 1728, 1764 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Contains products of suitable powers of 2 and Fermat primes. For x = 2^u*3^w, phi(x) = 2^u*3^(w-1) with suitable exponents. Analogous constructions are possible with {2,3,7} prime divisors, etc. From Ivan Neretin, Mar 19 2015: (Start) Also, numbers k that meet the following criteria for every prime p dividing k: 1. All prime divisors of p-1 must also divide k; 2. If k has no prime divisors of the form m*p+1, and k is divisible by p, then k must be divisible by p^2. Also, numbers k for which {k, phi(k), phi(phi(k))} is a geometric progression. (End) All terms > 1 are even. An even number k is in the sequence iff 2*k is in the sequence. - Robert Israel, Mar 19 2015 For n > 1, the largest prime factor of a(n) has multiplicity >= 2. For all prime factors more than half of the largest prime factor of a(n), the multiplicity differs from 1. If k = p1^a1 * p2^a2 * ... * pm^am is in the sequence, then so is p1^b1 * p2^b2 * ... * pm^bm for 1 <= i <= m and prime pi and bi >= ai. If m * p^2 is not in the sequence, for a prime p and some m > 0, then neither is m * p^3. - David A. Corneth, Mar 22 2015 A027748(a(n),j) = A027748(A000010(a(n)),j) for j=1..A001221(a(n)); also numbers k such that k and phi(k) have the same squarefree kernel: A007947(a(n)) = A007947(A000010(a(n))). - Reinhard Zumkeller, Jun 01 2015 Pollack and Pomerance call these numbers "phi-perfect numbers". - Amiram Eldar, Jun 02 2020 LINKS David A. Corneth, Table of n, a(n) for n = 1..117561 (terms <= 10^11; first 10000 terms from T. D. Noe) Paul Pollack and Carl Pomerance, Prime-Perfect Numbers, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 12a, Paper A14, 2012. EXAMPLE k = 578 = 2*17*17, phi(578) = 272 = 2*2*2*2*17 with 2 and 17 prime factors, so 578 is a term. k = 588 = 2*2*3*7*7, phi(588) = 168 = 2*2*2*3*7, so 588 is a term. k = 264196 = 2*2*257*257, phi(264196) = 512*257 = 131584, so 264196 is a term. MAPLE select(numtheory:-factorset = numtheory:-factorset @ numtheory:-phi, [1, 2*i \$ i=1..2000]); # Robert Israel, Mar 19 2015 isA055744 := proc(n) nfs := numtheory[factorset](n) ; phinfs := numtheory[factorset](numtheory[phi](n)) ; if nfs = phinfs then true; else false; end if; end proc: A055744 := proc(n) if n = 1 then 1; else for a from procname(n-1)+1 do if isA055744(a) then return a; end if; end do: end if; end proc: # R. J. Mathar, Sep 23 2016 MATHEMATICA Select[Range@ 1800, First /@ FactorInteger@ # == First /@ FactorInteger@ EulerPhi@ # &] (* Michael De Vlieger, Mar 21 2015 *) PROG (PARI) is(n)=factor(n)[, 1]==factor(eulerphi(n))[, 1] \\ Charles R Greathouse IV, Oct 31 2011 (PARI) is(n)=my(f=factor(n)); f[, 1]==factor(eulerphi(f))[, 1] \\ Charles R Greathouse IV, May 26 2015 (Haskell) a055744 n = a055744_list !! (n-1) a055744_list = 1 : filter f [2..] where f x = all ((== 0) . mod x) (concatMap (a027748_row . subtract 1) ps) && all ((== 0) . mod (a173557 x)) (map fst \$ filter ((== 1) . snd) \$ zip ps \$ a124010_row x) where ps = a027748_row x -- Reinhard Zumkeller, Jun 01 2015 CROSSREFS Intersection of A073539 and A151999. - Amiram Eldar, Jun 02 2020 Cf. A001221, A000010, A110751, A110819, A027598, A081377. Cf. A007947, A027748, A055742, A173557, A256248, subsequence of A124240. Sequence in context: A312783 A312784 A070738 * A141718 A195382 A211413 Adjacent sequences: A055741 A055742 A055743 * A055745 A055746 A055747 KEYWORD nonn AUTHOR Labos Elemer, Jul 11 2000 EXTENSIONS Corrected and extended by James A. Sellers, Jul 11 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 2 06:32 EST 2024. Contains 370460 sequences. (Running on oeis4.)