The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054994 Numbers of the form q1^b1 * q2^b2 * q3^b3 * q4^b4 * q5^b5 * ... where q1=5, q2=13, q3=17, q4=29, q5=37, ... (A002144) and b1 >= b2 >= b3 >= b4 >= b5 >= .... 14
 1, 5, 25, 65, 125, 325, 625, 1105, 1625, 3125, 4225, 5525, 8125, 15625, 21125, 27625, 32045, 40625, 71825, 78125, 105625, 138125, 160225, 203125, 274625, 359125, 390625, 528125, 690625, 801125, 1015625, 1185665, 1221025, 1373125, 1795625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This sequence is related to Pythagorean triples regarding the number of hypotenuses which are in a particular number of total Pythagorean triples and a particular number of primitive Pythagorean triples. Least integer "mod 4 prime signature" values that are the hypotenuse of at least one primitive Pythagorean triple. - Ray Chandler, Aug 26 2004 See A097751 for definition of "mod 4 prime signature"; terms of A097752 with all prime factors of form 4*k+1. Sequence A006339 (Least hypotenuse of n distinct Pythagorean triangles) is a subset of this sequence. - Ruediger Jehn, Jan 13 2022 LINKS Ray Chandler, Table of n, a(n) for n = 1..10000 Eric Weisstein's World of Mathematics, Pythagorean Triple FORMULA Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A006278(n)) = 1.2707219403... - Amiram Eldar, Oct 20 2020 EXAMPLE 1=5^0, 5=5^1, 25=5^2, 65=5*13, 125=5^3, 325=5^2*13, 625=5^4, etc. MATHEMATICA maxTerm = 10^15; (* this limit gives ~ 500 terms *) maxNumberOfExponents = 9; (* this limit has to be increased until the number of reaped terms no longer changes *) bmax = Ceiling[ Log[ maxTerm]/Log[q]]; q = Reap[For[k = 0 ; cnt = 0, cnt <= maxNumberOfExponents, k++, If[PrimeQ[4*k + 1], Sow[4*k + 1]; cnt++]]][[2, 1]]; Clear[b]; b[maxNumberOfExponents + 1] = 0; iter = Sequence @@ Table[{b[k], b[k + 1], bmax[[k]]}, {k, maxNumberOfExponents, 1, -1}]; Reap[ Do[an = Product[q[[k]]^b[k], {k, 1, maxNumberOfExponents}]; If[an <= maxTerm, Print[an]; Sow[an]], Evaluate[iter]]][[2, 1]] // Flatten // Union (* Jean-François Alcover, Jan 18 2013 *) PROG (PARI) list(lim)= { my(u=[1], v=List(), w=v, pr, t=1); forprime(p=5, , if(p%4>1, next); t*=p; if(t>lim, break); listput(w, t) ); for(i=1, #w, pr=1; for(e=1, logint(lim\=1, w[i]), pr*=w[i]; for(j=1, #u, t=pr*u[j]; if(t>lim, break); listput(v, t) ) ); if(w[i]^2

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 21:00 EST 2022. Contains 358648 sequences. (Running on oeis4.)