|
|
A054994
|
|
Numbers of the form q1^b1 * q2^b2 * q3^b3 * q4^b4 * q5^b5 * ... where q1=5, q2=13, q3=17, q4=29, q5=37, ... (A002144) and b1 >= b2 >= b3 >= b4 >= b5 >= ....
|
|
14
|
|
|
1, 5, 25, 65, 125, 325, 625, 1105, 1625, 3125, 4225, 5525, 8125, 15625, 21125, 27625, 32045, 40625, 71825, 78125, 105625, 138125, 160225, 203125, 274625, 359125, 390625, 528125, 690625, 801125, 1015625, 1185665, 1221025, 1373125, 1795625
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
This sequence is related to Pythagorean triples regarding the number of hypotenuses which are in a particular number of total Pythagorean triples and a particular number of primitive Pythagorean triples.
Least integer "mod 4 prime signature" values that are the hypotenuse of at least one primitive Pythagorean triple. - Ray Chandler, Aug 26 2004
See A097751 for definition of "mod 4 prime signature"; terms of A097752 with all prime factors of form 4*k+1.
Sequence A006339 (Least hypotenuse of n distinct Pythagorean triangles) is a subset of this sequence. - Ruediger Jehn, Jan 13 2022
|
|
LINKS
|
|
|
FORMULA
|
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A006278(n)) = 1.2707219403... - Amiram Eldar, Oct 20 2020
|
|
EXAMPLE
|
1=5^0, 5=5^1, 25=5^2, 65=5*13, 125=5^3, 325=5^2*13, 625=5^4, etc.
|
|
MATHEMATICA
|
maxTerm = 10^15; (* this limit gives ~ 500 terms *) maxNumberOfExponents = 9; (* this limit has to be increased until the number of reaped terms no longer changes *) bmax = Ceiling[ Log[ maxTerm]/Log[q]]; q = Reap[For[k = 0 ; cnt = 0, cnt <= maxNumberOfExponents, k++, If[PrimeQ[4*k + 1], Sow[4*k + 1]; cnt++]]][[2, 1]]; Clear[b]; b[maxNumberOfExponents + 1] = 0; iter = Sequence @@ Table[{b[k], b[k + 1], bmax[[k]]}, {k, maxNumberOfExponents, 1, -1}]; Reap[ Do[an = Product[q[[k]]^b[k], {k, 1, maxNumberOfExponents}]; If[an <= maxTerm, Print[an]; Sow[an]], Evaluate[iter]]][[2, 1]] // Flatten // Union (* Jean-François Alcover, Jan 18 2013 *)
|
|
PROG
|
(PARI) list(lim)=
{
my(u=[1], v=List(), w=v, pr, t=1);
forprime(p=5, ,
if(p%4>1, next);
t*=p;
if(t>lim, break);
listput(w, t)
);
for(i=1, #w,
pr=1;
for(e=1, logint(lim\=1, w[i]),
pr*=w[i];
for(j=1, #u,
t=pr*u[j];
if(t>lim, break);
listput(v, t)
)
);
if(w[i]^2<lim, u=Set(concat(Vec(v), u)); v=List());
);
Set(concat(Vec(v), u));
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Bernard Altschuler (Altschuler_B(AT)bls.gov), May 30 2000
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|