The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054994 Numbers of the form q1^b1 * q2^b2 * q3^b3 * q4^b4 * q5^b5 * ... where q1=5, q2=13, q3=17, q4=29, q5=37, ... (A002144) and b1 >= b2 >= b3 >= b4 >= b5 >= .... 14
 1, 5, 25, 65, 125, 325, 625, 1105, 1625, 3125, 4225, 5525, 8125, 15625, 21125, 27625, 32045, 40625, 71825, 78125, 105625, 138125, 160225, 203125, 274625, 359125, 390625, 528125, 690625, 801125, 1015625, 1185665, 1221025, 1373125, 1795625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This sequence is related to Pythagorean triples regarding the number of hypotenuses which are in a particular number of total Pythagorean triples and a particular number of primitive Pythagorean triples. Least integer "mod 4 prime signature" values that are the hypotenuse of at least one primitive Pythagorean triple. - Ray Chandler, Aug 26 2004 See A097751 for definition of "mod 4 prime signature"; terms of A097752 with all prime factors of form 4*k+1. Sequence A006339 (Least hypotenuse of n distinct Pythagorean triangles) is a subset of this sequence. - Ruediger Jehn, Jan 13 2022 LINKS Ray Chandler, Table of n, a(n) for n = 1..10000 Eric Weisstein's World of Mathematics, Pythagorean Triple FORMULA Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A006278(n)) = 1.2707219403... - Amiram Eldar, Oct 20 2020 EXAMPLE 1=5^0, 5=5^1, 25=5^2, 65=5*13, 125=5^3, 325=5^2*13, 625=5^4, etc. MATHEMATICA maxTerm = 10^15; (* this limit gives ~ 500 terms *) maxNumberOfExponents = 9; (* this limit has to be increased until the number of reaped terms no longer changes *) bmax = Ceiling[ Log[ maxTerm]/Log[q]]; q = Reap[For[k = 0 ; cnt = 0, cnt <= maxNumberOfExponents, k++, If[PrimeQ[4*k + 1], Sow[4*k + 1]; cnt++]]][[2, 1]]; Clear[b]; b[maxNumberOfExponents + 1] = 0; iter = Sequence @@ Table[{b[k], b[k + 1], bmax[[k]]}, {k, maxNumberOfExponents, 1, -1}]; Reap[ Do[an = Product[q[[k]]^b[k], {k, 1, maxNumberOfExponents}]; If[an <= maxTerm, Print[an]; Sow[an]], Evaluate[iter]]][[2, 1]] // Flatten // Union (* Jean-François Alcover, Jan 18 2013 *) PROG (PARI) list(lim)= { my(u=[1], v=List(), w=v, pr, t=1); forprime(p=5, , if(p%4>1, next); t*=p; if(t>lim, break); listput(w, t) ); for(i=1, #w, pr=1; for(e=1, logint(lim\=1, w[i]), pr*=w[i]; for(j=1, #u, t=pr*u[j]; if(t>lim, break); listput(v, t) ) ); if(w[i]^2

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 03:14 EDT 2023. Contains 362992 sequences. (Running on oeis4.)