login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054090
Triangular array generated by its row sums: T(n,0) = 1 for n >= 0, T(n,1) = r(n-1), T(n,k) = T(n,k-1) - (-1)^k * r(n-k) for k = 2, 3, ..., n, n >= 2, r(h) = sum of the numbers in row h of T.
11
1, 1, 1, 1, 2, 1, 1, 4, 2, 3, 1, 10, 6, 8, 7, 1, 32, 22, 26, 24, 25, 1, 130, 98, 108, 104, 106, 105, 1, 652, 522, 554, 544, 548, 546, 547, 1, 3914, 3262, 3392, 3360, 3370, 3366, 3368, 3367, 1, 27400, 23486, 24138, 24008, 24040, 24030, 24034, 24032, 24033
OFFSET
0,5
FORMULA
T(n, k) = T(n, k-1) - (-1)^k * Sum_{j=0..n-k} T(n-k, j), with T(n, 0) = 1, and T(n, 1) = Sum_{j=0..n-1} T(n-1, j).
Sum_{k=0..n} T(n, k) = A054091(n).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 4, 2, 3;
1, 10, 6, 8, 7;
1, 32, 22, 26, 24, 25;
1, 130, 98, 108, 104, 106, 105;
1, 652, 522, 554, 544, 548, 546, 547;
1, 3914, 3262, 3392, 3360, 3370, 3366, 3368, 3367;
1, 27400, 23486, 24138, 24008, 24040, 24030, 24034, 24032, 24033;
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==1, Sum[T[n-1, j], {j, 0, n-1}], T[n, k-1] - (-1)^k*Sum[T[n-k, j], {j, 0, n-k}]]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 23 2022 *)
PROG
(PARI) {T(n, k)= local(A); if(k<0||k>n, 0, if(k==0, 1, A=vector(n, i, (i>1)+1); for(i=2, n-1, A[i+1]=(i-1)*A[i]+2); sum(i=0, k-1, (-1)^i*A[n-i])))} /* Michael Somos, Nov 19 2006 */
(SageMath)
@CachedFunction
def T(n, k): # T = A054090
if (k==0): return 1
elif (k==1): return sum(T(n-1, j) for j in (0..n-1))
else: return T(n, k-1) - (-1)^k*sum(T(n-k, j) for j in (0..n-k))
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 23 2022
CROSSREFS
Cf. A054091 (row sums).
Sequence in context: A064191 A127420 A129033 * A239456 A122517 A256098
KEYWORD
nonn,tabl,eigen
STATUS
approved