login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A064191
Triangle T(n,k) (n >= 0, 0 <= k <= n) generalizing Motzkin numbers.
1
1, 1, 1, 2, 1, 1, 4, 2, 2, 1, 9, 4, 5, 2, 1, 21, 9, 12, 5, 3, 1, 51, 21, 30, 12, 9, 3, 1, 127, 51, 76, 30, 25, 9, 4, 1, 323, 127, 196, 76, 69, 25, 14, 4, 1, 835, 323, 512, 196, 189, 69, 44, 14, 5, 1, 2188, 835, 1353, 512, 518, 189, 133, 44, 20, 5, 1, 5798, 2188, 3610, 1353
OFFSET
0,4
COMMENTS
This triangle appears on page 9 of the linked reference and is defined by Corollary 2.4.
A number triangle with repeated columns of A064189. Production matrix is A070909 (without first term). - Philippe Deléham, Dec 02 2009
LINKS
J. L. Arregui, Tangent and Bernoulli numbers related to Motzkin and Catalan numbers by means of numerical triangles.
FORMULA
T(n, 0) = Sum_{k=0..n-1} T(n-1, k). For k even, 0 < k <= n, T(n, k) = Sum_{j=k-1..n-1} T(n-1, j). For k odd, 0 < k <= n, T(n, k) = T(n-1, k-1). - David Wasserman, Jul 15 2002
EXAMPLE
Triangle begins
1;
1, 1;
2, 1, 1;
4, 2, 2, 1; ...
CROSSREFS
First column gives A001006.
Sequence in context: A347629 A176452 A244581 * A127420 A129033 A054090
KEYWORD
nonn,tabl,easy
AUTHOR
N. J. A. Sloane, Sep 21 2001
EXTENSIONS
More terms from David Wasserman, Jul 15 2002
STATUS
approved