login
A064190
Triangle T(n,k) generalizing the tangent numbers.
2
1, 2, 6, 16, 48, 72, 272, 816, 1440, 1440, 7936, 23808, 44352, 57600, 43200, 353792, 1061376, 2027520, 2903040, 3024000, 1814400, 22368256, 67104768, 129964032, 195379200, 232243200, 203212800, 101606400, 1903757312, 5711271936
OFFSET
0,2
FORMULA
T(n+1, m) = m*(m+1)*Sum_{k = m-1..n} T(n, k).
EXAMPLE
Triangle begins:
1;
2, 6;
16, 48, 72;
272, 816, 1440, 1440;
...
MATHEMATICA
t[1, 1] = 1; t[1, 0] = 0; t[n_ /; n > 1, m_] := t[n, m] = m*(m+1)*Sum[t[n-1, k], {k, m-1, n-1}]; Table[t[n, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 02 2013 *)
CROSSREFS
First column gives A000182.
If m*(m+1) is replaced in the formula by m*m, the first column is the sequence of secant numbers A000364. - Jose L. Arregui (arregui(AT)posta.unizar.es), Oct 09 2001
Sequence in context: A071726 A148443 A148444 * A151281 A045694 A225178
KEYWORD
nonn,tabl,easy,nice
AUTHOR
N. J. A. Sloane, Sep 21 2001
EXTENSIONS
More terms from Vladeta Jovovic, Sep 22 2001
STATUS
approved