Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jul 19 2024 03:13:03
%S 1,1,1,1,2,1,1,4,2,3,1,10,6,8,7,1,32,22,26,24,25,1,130,98,108,104,106,
%T 105,1,652,522,554,544,548,546,547,1,3914,3262,3392,3360,3370,3366,
%U 3368,3367,1,27400,23486,24138,24008,24040,24030,24034,24032,24033
%N Triangular array generated by its row sums: T(n,0) = 1 for n >= 0, T(n,1) = r(n-1), T(n,k) = T(n,k-1) - (-1)^k * r(n-k) for k = 2, 3, ..., n, n >= 2, r(h) = sum of the numbers in row h of T.
%H G. C. Greubel, <a href="/A054090/b054090.txt">Rows n = 0..50 of the triangle, flattened</a>
%F T(n, k) = T(n, k-1) - (-1)^k * Sum_{j=0..n-k} T(n-k, j), with T(n, 0) = 1, and T(n, 1) = Sum_{j=0..n-1} T(n-1, j).
%F Sum_{k=0..n} T(n, k) = A054091(n).
%e Triangle begins as:
%e 1;
%e 1, 1;
%e 1, 2, 1;
%e 1, 4, 2, 3;
%e 1, 10, 6, 8, 7;
%e 1, 32, 22, 26, 24, 25;
%e 1, 130, 98, 108, 104, 106, 105;
%e 1, 652, 522, 554, 544, 548, 546, 547;
%e 1, 3914, 3262, 3392, 3360, 3370, 3366, 3368, 3367;
%e 1, 27400, 23486, 24138, 24008, 24040, 24030, 24034, 24032, 24033;
%t T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==1, Sum[T[n-1,j], {j,0,n-1}], T[n,k-1] - (-1)^k*Sum[T[n-k,j], {j,0,n-k}]]];
%t Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jun 23 2022 *)
%o (PARI) {T(n, k)= local(A); if(k<0||k>n, 0, if(k==0, 1, A=vector(n, i, (i>1)+1); for(i=2, n-1, A[i+1]=(i-1)*A[i]+2); sum(i=0, k-1, (-1)^i*A[n-i])))} /* _Michael Somos_, Nov 19 2006 */
%o (SageMath)
%o @CachedFunction
%o def T(n, k): # T = A054090
%o if (k==0): return 1
%o elif (k==1): return sum(T(n-1, j) for j in (0..n-1))
%o else: return T(n, k-1) - (-1)^k*sum(T(n-k, j) for j in (0..n-k))
%o flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jun 23 2022
%Y Cf. A054091 (row sums).
%K nonn,tabl,eigen
%O 0,5
%A _Clark Kimberling_