

A053837


Sum of digits of n modulo 10.


6



0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


LINKS

Table of n, a(n) for n=0..104.


FORMULA

a(n) =A010879(A007953(n)) =(n+a(floor[n/10])) mod 10. So can construct sequence by starting with 0 and mapping 0>0123456789, 1>1234567890, 2>2345678901 etc. (e.g. 0, 0123456789, 0123456789123456789023456789013456789012456..., etc.) and looking at nth digit of a term with sufficient digits.


EXAMPLE

a(59)=4 because 5+9 = 14 = 4 mod 10


MATHEMATICA

Table[Mod[Total[IntegerDigits[n]], 10], {n, 0, 120}] (* Harvey P. Dale, Oct 02 2018 *)


CROSSREFS

Cf. A000120, A007953, A010060, A053838A053844.
Sequence in context: A037265 A292685 A285093 * A128244 A010888 A177274
Adjacent sequences: A053834 A053835 A053836 * A053838 A053839 A053840


KEYWORD

base,nonn


AUTHOR

Henry Bottomley, Mar 28 2000


STATUS

approved



