login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128244
Let s be the sum of the digits of n; a(n) is the product of the digits of s.
1
1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6
OFFSET
1,2
COMMENTS
The sequence is equal to A053837 up to the 488th term.
LINKS
FORMULA
a(n) = A007954(A007953(n)). - Michel Marcus, Dec 09 2016
EXAMPLE
a(345)=2 because 3+4+5=12 and 1*2=2.
MAPLE
P:=proc(n) local i, k, w; for i from 1 by 1 to n do w:=0; k:=i; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; k:=w; w:=1; while k>0 do w:=w*(k-(trunc(k/10)*10)); k:=trunc(k/10); od; print(w); od; end: P(500);
# alternative
f:= n -> convert(convert(convert(convert(n, base, 10), `+`), base, 10), `*`):
map(f, [$1..100]); # Robert Israel, Dec 09 2016
MATHEMATICA
sdpd[n_]:=Module[{s=Total[IntegerDigits[n]]}, Times@@IntegerDigits[s]]; Array[sdpd, 110] (* Harvey P. Dale, Dec 17 2013 *)
CROSSREFS
KEYWORD
easy,nonn,base
AUTHOR
EXTENSIONS
Offset corrected by Robert Israel, Dec 09 2016
STATUS
approved