login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128245
Smallest of three consecutive composite numbers whose sum is prime.
1
6, 9, 12, 18, 21, 22, 35, 36, 42, 45, 51, 65, 69, 78, 82, 88, 96, 102, 111, 125, 126, 135, 138, 161, 162, 165, 166, 172, 189, 198, 209, 232, 249, 255, 256, 261, 275, 291, 292, 305, 312, 316, 329, 335, 336, 345, 348, 352, 366, 371, 382, 396, 399, 408, 429, 432
OFFSET
1,1
COMMENTS
If n is a member of this sequence, either n+1 or n+2 is prime. This suggests that the density of the sequence is roughly kn/log^2 n for some k. Counts up to 10^9 suggest k is about 5.26. - Charles R Greathouse IV, Sep 11 2009
LINKS
FORMULA
By Rosser's theorem, a(2n) > n log n. - Charles R Greathouse IV, Sep 11 2009
EXAMPLE
6 + 8 + 9 = 23 = A060328(1);
9 + 10 + 12 = 31 = A060328(2);
12 + 14 + 15 = 41 = A060328(3);
18 + 20 + 21 = 59 = A060328(4).
MATHEMATICA
CompositeNext[n_]:=Module[{k=n+1}, While[PrimeQ[k], k++ ]; k]; lst={}; Do[p=n+CompositeNext[n]+CompositeNext[CompositeNext[n]]; If[ !PrimeQ[n]&&PrimeQ[p], AppendTo[lst, n]], {n, 2, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jun 15 2009 *)
Select[Partition[Select[Range[500], CompositeQ], 3, 1], PrimeQ[Total[#]]&][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 24 2019 *)
PROG
(PARI) test(n)={my(b=a+1, c); b+=isprime(b); c=b+1; c+=isprime(c); isprime(a+b+c)}; for(n=4, 1e3, if(!isprime(n)&&test(n), print1(n", "))) \\ Charles R Greathouse IV, Sep 11 2009
CROSSREFS
Cf. A060328.
Sequence in context: A136360 A023483 A023042 * A117714 A245685 A315957
KEYWORD
nonn
AUTHOR
Zak Seidov, May 03 2007
STATUS
approved