login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053799
Number of basis partitions of n+9 with Durfee square size 3.
3
1, 2, 4, 8, 12, 18, 26, 34, 44, 56, 68, 82, 98, 114, 132, 152, 172, 194, 218, 242, 268, 296, 324, 354, 386, 418, 452, 488, 524, 562, 602, 642, 684, 728, 772, 818, 866, 914, 964, 1016, 1068, 1122, 1178, 1234, 1292, 1352, 1412, 1474, 1538, 1602, 1668, 1736
OFFSET
0,2
COMMENTS
a(n) is the number of solutions in integers (x,y,z) of |x| + 2|y| + 3|z| = |n|. - Michael Somos, Jul 17 2018
LINKS
M. D. Hirschhorn, Basis partitions and Rogers-Ramanujan partitions, Discrete Math. 205 (1999), 241-243.
FORMULA
For n>0, a(n) = 2*(1+floor(n^2/3)) = 2*A087483(n-1) = 2*(1+A000212(n)). - Max Alekseyev, Dec 05 2013
G.f.: (1+x)*(1+x^2)*(1+x^3)/((1-x)*(1-x^2)*(1-x^3)) = (1+x)*(1+x^2)*(1-x+x^2)/((1-x)^3*(1+x+x^2)).
a(n) = A000982(n)+A008749(n). - John Mason, Jan 08 2015
From Michael Somos, Jul 17 2018: (Start)
Euler transform of length 6 sequence [2, 1, 2, -1, 0, -1].
a(n+1) - 2*a(n) + a(n-1) = 1 + (-1)^n if |n|>1.
a(n) = a(-n) for all n in Z. (End)
EXAMPLE
G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 12*x^4 + 18*x^5 + 26*x^6 + 34*x^7 + ... - Michael Somos, Jul 17 2018
MATHEMATICA
LinearRecurrence[{2, -1, 1, -2, 1}, {1, 2, 4, 8, 12, 18}, 60] (* Harvey P. Dale, Aug 25 2015 *)
a[ n_] := 2 Quotient[ n^2, 3] + 2 - Boole[n == 0]; (* Michael Somos, Jul 17 2018 *)
a[ n_] := SeriesCoefficient[ (1 + x^2) (1 + x^3) / ((1 - x)^3 (1 + x + x^2)), {x, 0, Abs@n}]; (* Michael Somos, Jul 17 2018 *)
a[ n_] := Length @ FindInstance[ Abs[x] + 2 Abs[y] + 3 Abs[z] == Abs[n], {x, y, z}, Integers, 10^9]; (* Michael Somos, Jul 17 2018 *)
PROG
(PARI) {a(n) = n^2 \ 3 * 2 + 2 - (n==0)}; /* Michael Somos, Jul 17 2018 */
CROSSREFS
Sequence in context: A293495 A375978 A330130 * A343949 A284122 A212585
KEYWORD
easy,nonn
AUTHOR
James A. Sellers, Mar 27 2000
STATUS
approved