login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of basis partitions of n+9 with Durfee square size 3.
3

%I #30 Jul 18 2018 09:43:03

%S 1,2,4,8,12,18,26,34,44,56,68,82,98,114,132,152,172,194,218,242,268,

%T 296,324,354,386,418,452,488,524,562,602,642,684,728,772,818,866,914,

%U 964,1016,1068,1122,1178,1234,1292,1352,1412,1474,1538,1602,1668,1736

%N Number of basis partitions of n+9 with Durfee square size 3.

%C a(n) is the number of solutions in integers (x,y,z) of |x| + 2|y| + 3|z| = |n|. - _Michael Somos_, Jul 17 2018

%H Seiichi Manyama, <a href="/A053799/b053799.txt">Table of n, a(n) for n = 0..10000</a>

%H M. D. Hirschhorn, <a href="https://doi.org/10.1016/S0012-365X(99)00030-8">Basis partitions and Rogers-Ramanujan partitions</a>, Discrete Math. 205 (1999), 241-243.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,-2,1).

%F For n>0, a(n) = 2*(1+floor(n^2/3)) = 2*A087483(n-1) = 2*(1+A000212(n)). - _Max Alekseyev_, Dec 05 2013

%F G.f.: (1+x)*(1+x^2)*(1+x^3)/((1-x)*(1-x^2)*(1-x^3)) = (1+x)*(1+x^2)*(1-x+x^2)/((1-x)^3*(1+x+x^2)).

%F a(n) = A000982(n)+A008749(n). - _John Mason_, Jan 08 2015

%F From _Michael Somos_, Jul 17 2018: (Start)

%F Euler transform of length 6 sequence [2, 1, 2, -1, 0, -1].

%F a(n+1) - 2*a(n) + a(n-1) = 1 + (-1)^n if |n|>1.

%F a(n) = a(-n) for all n in Z. (End)

%e G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 12*x^4 + 18*x^5 + 26*x^6 + 34*x^7 + ... - _Michael Somos_, Jul 17 2018

%t LinearRecurrence[{2,-1,1,-2,1},{1,2,4,8,12,18},60] (* _Harvey P. Dale_, Aug 25 2015 *)

%t a[ n_] := 2 Quotient[ n^2, 3] + 2 - Boole[n == 0]; (* _Michael Somos_, Jul 17 2018 *)

%t a[ n_] := SeriesCoefficient[ (1 + x^2) (1 + x^3) / ((1 - x)^3 (1 + x + x^2)), {x, 0, Abs@n}]; (* _Michael Somos_, Jul 17 2018 *)

%t a[ n_] := Length @ FindInstance[ Abs[x] + 2 Abs[y] + 3 Abs[z] == Abs[n], {x, y, z}, Integers, 10^9]; (* _Michael Somos_, Jul 17 2018 *)

%o (PARI) {a(n) = n^2 \ 3 * 2 + 2 - (n==0)}; /* _Michael Somos_, Jul 17 2018 */

%K easy,nonn

%O 0,2

%A _James A. Sellers_, Mar 27 2000