login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008749
Expansion of (1+x^6)/((1-x)*(1-x^2)*(1-x^3)).
2
1, 1, 2, 3, 4, 5, 8, 9, 12, 15, 18, 21, 26, 29, 34, 39, 44, 49, 56, 61, 68, 75, 82, 89, 98, 105, 114, 123, 132, 141, 152, 161, 172, 183, 194, 205, 218, 229, 242, 255, 268, 281, 296, 309, 324, 339, 354, 369
OFFSET
0,3
COMMENTS
Conjecture: For n >= 1, A067628(a(n+2)) appears for the first time in A067628. Equivalently, A067628(a(n+2)) is the first T such that the minimal perimeter of polyiamonds of T triangles is a(n+2). - Winston C. Yang (winston(AT)cs.wisc.edu), Feb 05 2002
FORMULA
Conjecture: Let b(n>=0) = (0, 1, 1, 1, 1, 3, 1, 3, 3, 3, 3, 5, 3, 5, 5, 5, 5, 7, 3, ...). Equivalently, let b(0) = 0, b(n>=1) = 2*floor((n-1)/6) + 1 + (2 if n+1=0 mod 6; 0 else). Then a(0) = 1, a(n>=1) = a(n-1) + b(n-1). - Winston C. Yang (winston(AT)cs.wisc.edu), Feb 05 2002
a(n) = (47 + 6*n^2 + 9*(-1)^n + 8*A099837(n+3))/36, n>0. - R. J. Mathar, Jun 24 2009
EXAMPLE
Let n = 8. Then a(n+2) = a(10) = 18. Note A067628(18) = 12 and is the first appearance of 12 in A067628. Equivalently, 12 is the first T such that the min perimeter of polyiamonds of T triangles is 18.
MATHEMATICA
CoefficientList[Series[(1+x^6)/((1-x)*(1-x^2)*(1-x^3)), {x, 0, 60}], x] (* G. C. Greubel, Aug 03 2019 *)
PROG
(PARI) my(x='x+O('x^60)); Vec((1+x^6)/((1-x)*(1-x^2)*(1-x^3))) \\ G. C. Greubel, Aug 03 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^6)/((1-x)*(1-x^2)*(1-x^3)) )); // G. C. Greubel, Aug 03 2019
(Sage) ((1+x^6)/((1-x)*(1-x^2)*(1-x^3))).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Aug 03 2019
(GAP) a:=[1, 1, 2, 3, 4, 5];; for n in [7..60] do a[n]:=a[n-1]+a[n-2]-a[n-4] -a[n-5]+a[n-6]; od; a; # G. C. Greubel, Aug 03 2019
CROSSREFS
Cf. A067628.
Sequence in context: A118956 A372586 A109850 * A029000 A042962 A027584
KEYWORD
nonn
STATUS
approved