OFFSET
0,3
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,-1,1).
FORMULA
Conjecture: Let b(n>=0) = (0, 1, 1, 1, 1, 3, 1, 3, 3, 3, 3, 5, 3, 5, 5, 5, 5, 7, 3, ...). Equivalently, let b(0) = 0, b(n>=1) = 2*floor((n-1)/6) + 1 + (2 if n+1=0 mod 6; 0 else). Then a(0) = 1, a(n>=1) = a(n-1) + b(n-1). - Winston C. Yang (winston(AT)cs.wisc.edu), Feb 05 2002
a(n) = (47 + 6*n^2 + 9*(-1)^n + 8*A099837(n+3))/36, n>0. - R. J. Mathar, Jun 24 2009
EXAMPLE
MATHEMATICA
CoefficientList[Series[(1+x^6)/((1-x)*(1-x^2)*(1-x^3)), {x, 0, 60}], x] (* G. C. Greubel, Aug 03 2019 *)
PROG
(PARI) my(x='x+O('x^60)); Vec((1+x^6)/((1-x)*(1-x^2)*(1-x^3))) \\ G. C. Greubel, Aug 03 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^6)/((1-x)*(1-x^2)*(1-x^3)) )); // G. C. Greubel, Aug 03 2019
(Sage) ((1+x^6)/((1-x)*(1-x^2)*(1-x^3))).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Aug 03 2019
(GAP) a:=[1, 1, 2, 3, 4, 5];; for n in [7..60] do a[n]:=a[n-1]+a[n-2]-a[n-4] -a[n-5]+a[n-6]; od; a; # G. C. Greubel, Aug 03 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved