login
A029000
Expansion of 1/((1-x)(1-x^2)(1-x^3)(1-x^6)).
2
1, 1, 2, 3, 4, 5, 8, 9, 12, 15, 18, 21, 27, 30, 36, 42, 48, 54, 64, 70, 80, 90, 100, 110, 125, 135, 150, 165, 180, 195, 216, 231, 252, 273, 294, 315, 343, 364, 392, 420, 448, 476, 512, 540, 576, 612, 648, 684, 729, 765, 810, 855, 900, 945, 1000, 1045, 1100
OFFSET
0,3
COMMENTS
Number of partitions of n into parts 1, 2, 3, and 6. - Joerg Arndt, Jul 04 2013
FORMULA
a(n) = floor(1/18*(-3*floor((n + 2)/3) + 3*floor(n/3) + 2)*(floor(n/3) + 1) + 1/432*(n + 6)*(2*n^2 + 24*n + 47+9*(-1)^n) + 7/36). - Tani Akinari, Jul 04 2013
MATHEMATICA
CoefficientList[Series[1/((1 - x) (1 - x^2) (1 - x^3) (1 - x^6)), {x, 0, 80}], x] (* Vincenzo Librandi, May 12 2015 *)
PROG
(PARI) Vec(1/((1-x)*(1-x^2)*(1-x^3)*(1-x^6))+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
(Magma) [Floor(1/18*(-3*Floor((n + 2)/3) + 3*Floor(n/3) + 2)*(Floor(n/3) + 1) + 1/432*(n + 6)*(2*n^2 + 24*n + 47+9*(-1)^n) + 7/36): n in [0..80]]; // Vincenzo Librandi, May 12 2015
CROSSREFS
Sequence in context: A372586 A109850 A008749 * A042962 A027584 A161240
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vincenzo Librandi, May 12 2015
STATUS
approved