login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029000
Expansion of 1/((1-x)(1-x^2)(1-x^3)(1-x^6)).
2
1, 1, 2, 3, 4, 5, 8, 9, 12, 15, 18, 21, 27, 30, 36, 42, 48, 54, 64, 70, 80, 90, 100, 110, 125, 135, 150, 165, 180, 195, 216, 231, 252, 273, 294, 315, 343, 364, 392, 420, 448, 476, 512, 540, 576, 612, 648, 684, 729, 765, 810, 855, 900, 945, 1000, 1045, 1100
OFFSET
0,3
COMMENTS
Number of partitions of n into parts 1, 2, 3, and 6. - Joerg Arndt, Jul 04 2013
FORMULA
a(n) = floor(1/18*(-3*floor((n + 2)/3) + 3*floor(n/3) + 2)*(floor(n/3) + 1) + 1/432*(n + 6)*(2*n^2 + 24*n + 47+9*(-1)^n) + 7/36). - Tani Akinari, Jul 04 2013
MATHEMATICA
CoefficientList[Series[1/((1 - x) (1 - x^2) (1 - x^3) (1 - x^6)), {x, 0, 80}], x] (* Vincenzo Librandi, May 12 2015 *)
PROG
(PARI) Vec(1/((1-x)*(1-x^2)*(1-x^3)*(1-x^6))+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
(Magma) [Floor(1/18*(-3*Floor((n + 2)/3) + 3*Floor(n/3) + 2)*(Floor(n/3) + 1) + 1/432*(n + 6)*(2*n^2 + 24*n + 47+9*(-1)^n) + 7/36): n in [0..80]]; // Vincenzo Librandi, May 12 2015
CROSSREFS
Sequence in context: A372586 A109850 A008749 * A042962 A027584 A161240
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vincenzo Librandi, May 12 2015
STATUS
approved