login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028997
Theta series of quadratic form with Gram matrix [ 4, 1, 0, 1; 1, 4, 1, 0; 0, 1, 4, -1; 1, 0, -1, 4 ].
3
1, 0, 8, 8, 16, 8, 24, 0, 40, 16, 40, 16, 72, 24, 8, 32, 80, 16, 88, 24, 104, 8, 80, 32, 152, 48, 88, 48, 16, 48, 160, 48, 168, 64, 128, 8, 224, 48, 136, 64, 232, 48, 24, 48, 208, 104, 160, 80, 328, 0, 200, 112, 248, 64, 272, 96, 40, 112, 192, 88, 416, 72, 208, 16, 336, 112, 320
OFFSET
0,3
COMMENTS
Associated with permutations in Mathieu group M24 of shape (14)(7)(2)(1). - Michael Somos, Nov 22 2007
LINKS
M. Koike, Mathieu group M24 and modular forms, Nagoya Math. J., 99 (1985), 147-157. MR0805086 (87e:11060)
G. Nebe and N. J. A. Sloane, Home page for this lattice
FORMULA
G.f. is Fourier series of a weight 2 level 14 modular form. f(-1 / (14 t)) = 14 (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Nov 22 2007
Convolution of A030187 and A134782. - Michael Somos, Nov 22 2007
EXAMPLE
G.f. = 1 + 8*x^2 + 8*x^3 + 16*x^4 + 8*x^5 + 24*x^6 + 40*x^8 + 16*x^9 + 40*x^10 + ...
G.f. = 1 + 8*q^4 + 8*q^6 + 16*q^8 + 8*q^10 + 24*q^12 + 40*q^16 + 16*q^18 + 40*q^20 + ...
MATHEMATICA
a[ n_] := With[{e1 = QPochhammer[ x] QPochhammer[ x^7], e2 = QPochhammer[ x^2] QPochhammer[ x^14]}, SeriesCoefficient[ e1^4 / e2^2 + 4 x e1 e2 + 8 x^2 e2^4 / e1^2, {x, 0, n}]]; (* Michael Somos, Apr 19 2015 *)
PROG
(PARI) {a(n) = my(A, B); if( n<0, 0, A = x * O(x^n); B = eta(x^2 + A) * eta(x^14 + A); A = eta(x + A) * eta(x^7 + A); polcoeff( A^4 / B^2 + 4 * x * A * B + 8 * x^2 * B^4 / A^2, n))}; /* Michael Somos, Nov 22 2007 */
(PARI) {a(n) = my(G); if( n<0, 0, G = [ 4, 1, 0, 1; 1, 4, 1, 0; 0, 1, 4, -1; 1, 0, -1, 4 ]; polcoeff( 1 + 2 * x * Ser(qfrep( G, n, 1)), n))}; /* Michael Somos, Nov 22 2007 */
(Magma) A := Basis( ModularForms( Gamma0(14), 2), 67); A[1] + 8*A[3] + 8*A[4]; /* Michael Somos, Apr 19 2015 */
CROSSREFS
Sequence in context: A298182 A040057 A205709 * A168397 A186986 A112439
KEYWORD
nonn
AUTHOR
STATUS
approved